
AFRL-IF-RS-TR-2000-8 
Final Technical Report 
February 2000 

*$.#*- 

AN INVESTIGATION OF SYSTEM 
IDENTIFICATION TECHNIQUES FOR 
SIMULATION MODEL ABSTRACTION 

Systems View 

Douglas A. Popken and Louis Anthony Cox 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

20000328 008 
AIR FORCE RESEARCH LABORATORY 

INFORMATION DIRECTORATE 
ROME RESEARCH SITE 

ROME, NEW YORK 

DTIC QUALITY INSPECTED 3 



This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS). At NTIS it will be releasable to the general public, 
including foreign nations. 

AFRL-IF-RS-TR-2000-8 has been reviewed and is approved for publication. 

APPROVED:     L_ %i Vtuta.^ 
\> 

JAMES M. VACCARO 
Project Engineer 

FOR THE DIRECTOR:        y^>^JiO   {j^C^J- 

JAMES W. CUSACK, Chief 
Information Systems Division 

If your address has changed or if you wish to be removed from the Air Force Research 
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by 
your organization, please notify AFRL/IFSB, 525 Brooks Road, Rome, NY 13441-4505. 
This will assist us in maintaining a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a specific 
document require that it be returned. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

PubUc raporling burden lor this colectian of mlormation a estsnated to average 1 how par response, including tha tima for reviewing instructions, seerching oiisting data sourcts. gathering and maintaining Itta data needed, and competing and ravtawing 
lha coatction of information. Sand comments regarding this burdan estanata or any othtr aspect ol this collaction of intotmatwn, including suggasttons for raducmg this burden, to Washington Headquarters Services. Directorate for Information 

Operations and Deports. 12IS Jefferson Dens rfighns«. Suite 1204. Arlington, V» 222024302. and to the Office of Management end Budget. Paperwork Reduction Protect 10704-01881, Washington. DC 20S03. 

1. AGENCY USE ONLY (Leave Hank) 2. REPORT DATE 

FEBRUARY 2000 
3. REPORT TYPE AND DATES COVERED 

Final    Mar 99 - Nov 99 
4. TITLE AND SUBTITLE 

AN INVESTIGATION OF SYSTEM IDENTIFICATION TECHNIQUES FOR 
SIMULATION MODEL ABSTRACTION 

6. AUTHORIS) 

Douglas A. Popken and Louis Anthony Cox 

5. FUNDING NUMBERS 

C - F30602-99-C-0052 
PE- 62702F 
PR- 459S 
TA- BA 
WU-92 

7. PERFORMING ORGANIZATION NAMEISI AND ADDRESS(ES) 

Systems View 
9139 S Roadrunner St 
Highlands Ranch CO 80126 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIESI 

Air Force Research Laboratory/IFSB 
525 Brooks Road 
Rome NY 13441-4505 

1D.SP0NS0RINGIM0NIT0RING 
AGENCY REPORT NUMBER 

AFRL-IF-RS-TR-2000-8 

11. SUPPLEMENTARY NOTES 

Air Force Research Laboratory Project Engineer: James M. Vaccaro/IFSB/(315)330-3708 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words/ 

This report summarizes research into the application of system identification techniques to simulation model abstraction. 
System identification produces simplified mathematical models that approximate the dynamic behaviors of the underlying 
stochastic simulations.  Four state-space system identification techniques were examined: Canonical State-space, 
Compartmental Models, Maximum Entropy, and Hidden Markov Models (HMM). Two stochastic simulation models were 
identified: the "Attrition Simulation", a simulation of two opposing forces, each operating with multiple weapon system 
types; and the "Mission Simulation," a simulation of a squadron of aircraft performing battlefield air interdiction. The 
system identification techniques were evaluated and compared under a variety of scenarios on how well they replicate the 
distributions of the simulation states and decision outputs.  Encouraging results were achieved by the HMM technique applied 
to Attrition Simulation - and by the Maximum Entropy technique applied to the Mission Simulation. This report also 
discusses the run-time performance of the algorithms, the development of suitable model structures, and implications for 
future efforts. 

14. SUBJECT TERMS 

Model Abstraction, System Identification, State-Space Models, Multi-Resolution Modeling, 
Simulation 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

100  
16. PRICE CODE 

20. LIMITATION OF 
ABSTRACT 

UL 
Standard Form 298 IRev. 2-89) (EGI 
Presented by ANSI Std. 239.18 
Designed using Perform Pro. WHSIDI0R. Oct 94 



Abstract 

This report summarizes research into the application of system identification techniques 
to simulation model abstraction.   System identification produces simplified 
mathematical models that approximate the dynamic behaviors of the underlying 
stochastic simulations. Four state-space system identification techniques were examined: 
Canonical State-Space, Compartmental Models, Maximum Entropy, and Hidden Markov 
Models (HMM). Two stochastic simulation models were identified: the "Attrition 
Simulation", a simulation of two opposing forces, each operating with multiple weapon 
system types; and the "Mission Simulation", a simulation of a squadron of aircraft 
performing battlefield air interdiction. The system identification techniques were 
evaluated and compared under a variety of scenarios on how well they replicate the 
distributions of the simulation states and decision outputs. Encouraging results were 
achieved by the HMM technique applied to the Attrition Simulation - and by the 
Maximum Entropy technique applied to the Mission Simulation. This report also 
discusses the run-time performance of the algorithms, the development of suitable model 
structures, and implications for future efforts. 

Keywords: model abstraction, system identification, state-space models, multi-resolution 
modeling, simulation 
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Introduction 

Motivation 

Model abstraction techniques are used to construct low-resolution approximations of 
higher-resolution models. In this research, the high-resolution models are stochastic, 
discrete-event simulations of military combat systems. The research is motivated by the 
hypothesis that model abstraction is a potential enabling technology for the larger goal of 
multi-resolution modeling. 

In military simulations, multi-resolution modeling is often described with respect to a 
hierarchy of models similar to Figure 1. The idea is to execute a system model 

Figure 1. A Hierarchy of Military Simulation Models 

operating at a given level of the model hierarchy, which is itself comprised of 
components defined at the next lower level. The strategy reduces simulation 
development and support costs through gains in software reuse. A key to practical 
application is the ability to substitute low-resolution, approximate versions of 
components for high-resolution versions. This provides gains in run-time efficiency and 
further reduction of support costs, but at the expense of some acceptable loss of model 
accuracy. 

Even as computers become faster there will be a continuing need for low-resolutions 
models, high-resolution models, and multi-resolution modeling. Low-resolution models 
can be useful for: 

• making initial cuts at problems, 
• "comprehending the whole" without getting lost in detail, 
• reasoning about issues quickly or under time pressure, 
• analyzing choices in the presence of uncertainty, 
• using low-resolution information, and 
• calibrating higher-resolution models. 



On the other hand, high-resolution models are useful for: 

• understanding underlying phenomena, 
• representing and reasoning about detailed knowledge, 
• simulating "reality" and create virtual laboratories for studying phenomena that 

cannot be studied in any other way (e.g., a range of possible battles and wars), 
• using high-resolution information, which is sometimes quite tangible (e.g., weapon 

performance), and 
• calibrating lower-resolution models 

(From Davis and Zeigler, 1997). 

There are also strong motivations for having the ability to model at multiple levels of 
resolution, chief among them being speed and efficiency. By avoiding high levels of 
resolution across all model functions we can address large and complex scenarios while 
still being able to economize on resources needed for computation (hardware), data 
collection, model setup, validation, and analysis. Another historical motivation has been 
the desire to connect existing legacy models that operate at different levels of resolution. 

Context 

There are many forms of model abstraction. Figure 2 shows one useful taxonomy. 

Abstraction 

Structural Behavioral 

Data Model Static Dynamic 

i 1 
Homogenous Heterogeneous 

Figure 2. Abstraction Taxonomy 
(from Lee and Fishwick, 1996) 

Structural abstraction focuses on model abstraction levels and model types. Data 
abstraction uses statistical, mathematical, relational, or symbolic substitution methods to 
approximate time-dependent information (input, outputs, or parameters). Model 



abstractions focus on the composition of model components and mappings between 
components residing at different levels. Behavioral abstraction replaces a system 
component with a simplified version that approximates the behavior of the original 
component. Static behavioral approaches are time independent, and capture only a 
steady state output value. Dynamic behavioral approaches associate input/output 
trajectories over time.   System identification, the subject of this report, is a set of 
techniques that produce the latter - dynamic systems behavioral abstractions. 

Behavioral abstractions are sometimes thought of as "black box" modeling because they 
are more concerned with the input-output characteristics of the original model than with 
its internal structure. However, in this research we use techniques that might more 
accurately be called "gray box" approaches. That is, we will also be concerned with the 
structural components of the abstraction. These components can be shown to be 
morphisms (Zeigler, 1998) of the components in the simulation model. Consequently, 
our approach combines aspects of both structural and behavioral abstraction. 

System identification techniques are widely used in biomathematics, medicine, control 
system design, signal processing, speech recognition, and other fields to develop models 
of dynamical systems. There are many types of dynamical systems, e.g.: 
discrete/continuous time or state space, linear/nonlinear input-state-output mappings and 
dynamics, stochastic/deterministic/chaotic evolution, time varying/invariant state 
transition intensities, lumped/distributed parameters, centralized/decentralized control, 
etc.   A correspondingly vast number of system identification techniques have been 
developed to handle these different characteristics (Ljung, 1987). 

Choice of System Identification Techniques 

Selecting the appropriate system identification technique(s) involves making trade-offs 
among accuracy, performance, the quantity of data available, and the quality of the data. 
First of all, the simulation models we wish to identify are stochastic; therefore, we want 
techniques that can handle random and noisy data.   Second, we seek techniques that do 
not require excessive amounts of input/output data for the identification process.   Such 
data may not be available within practical limits of time and cost.   To maximize 
usability, the technique should be general enough to handle multiple inputs and multiple 
outputs ("MMO" systems). Lastly, the resulting model should be compact and efficient 
from both a computational and a conceptual point of view. 

Simultaneous pursuit of these objectives severely limits the set of possible techniques. 
We have selected a set of four, somewhat nontraditional, system identification techniques 
capable of producing linear time invariant (LTI) state-space models of the following 
general form: 

x(f) = Ax(t-l) + Bu(t) + s(f) 
y(t) = Cx(t) + e(t) 



where t is the discrete time index, v is an M element (noisy) observation vector, x is an N 
element state vector (the number of entities in each element), u is an R element input 
vector, s is an N element system noise vector, e is an M element observation noise 
vector, A is an N x N state transition matrix, B is an N x R input matrix, and C is an M x 
N observation matrix.   The techniques examined in this research are: 

• Canonical State Space 
• Compartmental Model 
• Maximum Entropy 
• Hidden Markov Model (HMM) 

Each is described in detail within this report. 



Simulation Model Development 

In this research we use specially developed simulation models as sources of system 
identification data. We use these, rather than using existing military simulation models, 
to provide a better assessment of the overall utility of the proposed system identification 
algorithms. The specific advantages include: 

• greater transparency 
• greater control over structural elements 
• greater control over dynamics (transition probabilities, event times, variance, etc.) 
• ease of use 
• generality 

At the same time we want models that portray typical elements of military simulations 
with sufficient detail to draw initial conclusions on the general applicability of the 
proposed algorithms. 

Model Scope 

In general, military simulation models span a wide range of domain scope and resolution. 
Table 1 below summarizes major model categories and their characteristics. 

Level of 
Model 

Scope Level of 
Detail 

Time Span Outputs Illustrative 
Uses 

Examples 

Theater/ 
Campaign 

Joint and 
combined 

Highly 
aggregated 

Days to weeks Campaign 
dynamics, 
(e.g., force 
draw-downs, 
movement) 

Evaluation of 
force 
structures, 
strategies, 
balances; 
wargaming 

CEM, 
TACWAR, 
THUNDER, 
JICM 

Mission/ 
Battle 

Multi- 
platform 

Moderate 
aggregation 
with some 
entities 

Minutes to 
hours 

Mission 
effectiveness 
(e.g., 
exchange 
ratios) 

Evaluation of 
alternative 
force 
employment 
concepts, 
forces, 
systems; 
wargaming 

Eagle, Vector 
II Suppressor, 
EADSIM, 
NSS 

Engagement One to a few 
friendly 
entities 

Individual 
entities, some 
detailed 
subsystems 

Seconds to 
minutes 

System 
effectiveness 
(eg- 
probability of 
kill) 

Evaluation of 
alternative 
tactics and 
systems; 
training 

JANUS, 
Brawler, 
ESAMS 

Engineering Single weapon 
systems and 
components 

Detailed down 
to piece parts, 
plus physics 

Sub-seconds 
to seconds 

Measures of 
system 
performance 

Design and 
evaluation of 
systems and 
subsystems; 
test support 

Many 
throughout 
R&D Centers 

From Davis and Bigelow, 1998. 

Table 1. Illustrative Scope and Resolution of DoD Models 
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Two benchmark simulation models were developed for this research. The first is the 
"Two-Sided Stochastic Attrition Simulation" (a.k.a. Attrition Simulation). The second is 
the "CAS/BAI (Close Air Support/Battlefield Air Interdiction) Mission Simulation" 
(a.k.a. Mission Simulation).   Within the framework provided above, our benchmark 
models could be considered as simplified versions of "Mission/Battle" models or 
"Theater/Campaign" models.1 The simulation models are discussed in detail below. 

Model 1 - Attrition Simulation 

Background 

Attrition simulations or attrition equations define the combat dynamics of combat 
simulation models. They are used to model the duration, lethality, and victor of a given 
combat scenario. The attrition simulation model developed for this research was inspired 
in part by Ancker (1995), who proposed two axioms for a "theory of combat": 1) "all 
combat is a hierarchical network of firefights", and especially 2) "a firefight is a 
terminating stochastic target attrition process on a discrete state-space with a 
continuous time parameter"  The "Attrition Simulation" was constructed to fit Ancker's 
second axiom. 

A reading of the available literature on existing combat simulations (see, for example, 
Brackeru Kress, and Rosenthal [eds.], 1995) indicates that this second axiom is observed 
by the attrition logic of a number of existing combat simulation models. However, it 
should also be noted that many other combat simulations use deterministic methods or a 
process mean value algorithm only. A common approach within this category is to use 
the classic Lanchester differential equations - 

to describe attrition dynamics. Here xt= (xu, x2t,... xmt) andyt = (ylt, y2t, ...ynt) represent 
the vector quantities of weapon systems by type on opposing sides, while A = [Ay] and B 
= [By] are the Lanchester coefficient matrices defining the rate at which y systems 
destroy x systems and vice versa. There has been some recent progress in aggregating 
models based on these dynamics (Fowler, 1999; Hillestad and Juncosa, 1995). Fowler 
further demonstrates how his technique can be applied to the final output of a single 
simulation instance. However, it is well known that these Lanchester relations are 
deficient in several respects: 1) they ignore combat stochasticity, 2) they do not account 
for the stochastic terminal distributions (absorption probabilities), and 3) they do not 

1 Both simulation models are highly simplified when compared to military simulation 
models in actual use. The rationale is the need to focus on the essential dynamic 
elements. 

11 



account for the correlation between attrition on the two sides (Ancker and Gafarian, 
1992). Techniques developed specifically for aggregating Lanchester equations can not 
be applied to identifying the general stochastic model that we consider in this research. 
However, the reverse may be true. 

Framework 

The framework of the Attrition Simulation is illustrated in Figure 3 below. There are two 
opposing sides, "Blue" and "Red", each having several weapon system "types". There are 
one or more weapon systems within each type. The simulation tracks each individual 
weapon system as it fires, and is fired upon, over time.  Each weapon system has a 
probability distribution describing the time between its firing events; however, all 
weapon systems of a given type have the same distribution. The selection of a target 
(opposing weapon system type) is performed by a probabilistic fire allocation function 
(see Appendix A for details) specific to each type. The probability of a weapon system 
destroying a member of a targeted type is specific to that attacker/defender pair. Each 
side may be replenished by new weapon systems of specific types ("Arrivals") at specific 
points in time. The simulation continues until a predefined combat termination condition 
is reached. 

Arrivals 
Weapon 
System 

Ro.il 

Arrivals 

'*+- 

-►► 
Weapon       ! 
System       **+* 

;        Rad2 : 

^JfT" 

▼   * 

Destroyed Destroyed 

Weapon      ! 
System       f**~ 

Red3 ! 

Figure 3. Two-Sided Stochastic Attrition Simulation 
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The attrition simulation can be applied to a wide variety of opposing weapon systems, 
including aircraft. Combat aircraft can be modeled by grouping them into types, where 
the types can be distinguished by differences in missions and, optionally, by differences 
in airframes. For example, missions might include defensive, escort, and ground attack. 
Airframes might include F-15' s, F-16' s, and A-10' s.   Depending on the obj ectives of the 
simulation, we could map individual aircraft within different airframe categories to 
different missions, resulting in a mixture of airframe subcategories within each mission 
grouping. Each of these subcategories becomes a "type" - equivalent to a "weapon 
system" in Figure 3 above. 

Variables 

Each weapon system type within the Attrition Simulation has attributes of lethality and 
vulnerability that are characterized by: 1) a vector of kill probabilities (one probability 
for each defender weapon system), 2) a probability distribution of inter-firing times, and 
3) a fire allocation function to distribute engagements among defender weapon system 
types (one probability for each defender weapon system). 

The other major variables describe the form of the arrival process (if any). Note that for 
the purposes of system identification, it is not necessary to construct a set of arrivals 
typical of the problem domain. We are free to use whatever arrival process will allow us 
to best identify the simulation model. However, when testing the resulting identified 
model, via comparisons to the original simulation, realistic arrival patterns would 
become more important. 

Initial and Termination Conditions 

The initial state is the number of weapon systems of each type on each side. The 
termination condition is a description of the state vector that signals the end of the 
simulation. One of four rules, each based on force strengths (discussed below and in 
Appendix A) may be used: 

1. Absolute Decision Rule - Combat termination occurs when the force strength (of 
either side) reaches a given threshold value. 

2. Proportional Decision Rule - Combat terminates when the force ratio reaches a 
specified threshold value. 

3. AOP Rule - Combat terminates when the force strength crosses either the absolute or 
proportional threshold. 

4. AAP Rule - Combat terminates when the force strength curve crosses both the 
absolute and proportional threshold. 

For further details on the characteristics and use of these rules see Jaiswal and 
Nagabhushana (1995). 



Model States 

The critical modeling feature of the Attrition Simulation is that the behavior of each 
simulation entity depends on the number and types of the other entities within the system. 
In other words, the rate at which a weapon system of a given type is destroyed is highly 
dependent on the current levels of both opposing and friendly weapon systems. This 
implies that we must capture all of the weapon system levels in our state space model 
structure. The simplest way to handle this is to work strictly at an aggregated level, 
where our state vector is a simple count of the number of weapon systems of each type, 
illustrated in Figure 4 below2.  This approach is consistent with many existing large- 
scale military simulation models ("Davis, et. al.; 1997). Within this approach we can 
easily model weapon system replenishments as external inputs to the weapon system 
state vector. 

Weapon \     f Weapon \  Weapon \ 
System I    System Svsteir.    ,■ 

N" -1-2 

Figure 4. Vector Based State Components of Attrition Simulation 

For purposes of system identification we convert the weapon system quantity vectors into 
force strength vectors. By using force strengths we have a common unit of measure for 
all weapon systems, thereby facilitating aggregation methods, termination rules (see 
below) and assumptions regarding "flow" between state vector components. The 
methodology for calculating force strengths is from Anderson and Miercort (1989,1995) 
and is described in Appendix A.  Under this approach, the "entities" being modeled are 
the units of force strength, which are initially distributed among the various weapon 
system types. The current number of "entities" of a given type is VJVt, where V, is the 
normalized strength factor and W; is the quantity for weapon system type i. 

Using a vector offeree strengths is a reasonable approach for the Canonical State Space, 
Maximum Entropy, and Compartmental Model techniques. For the first two techniques, 
this approach to state vector realization results in a deterministic state transition matrix 
relating current force levels to force levels in the next period. The standard form of the 
state transition matrix is shown in Figure 5 below . 

2 NB = number of Blue weapon system types, NR = number of Red weapon system types 
3 The algebraically equivalent canonical form (as produced by the Canonical State Space 
technique) would look quite different. 

14 



Destroyed wsB1 wsB2 wsB3 wsR1 wsR2 wsR3 

Destroyed 1 + + + + + + 
wsB1 0 + + + - - - 

wsB2 0 + + + - - - 

wsB3 0 + + + - - - 

wsR1 0 - - - + + + 
wsR2 0 - - - + + + 
wsR3 0 - - - + + + 

Figure 5. Standard Form of Vector State Transition Matrix for Attrition Simulation 
for Deterministic Techniques 

A Compartmental Model assumes a system in which the various subsystems interact by 
exchanging "flows of materials" (force strengths in this case).   The contents of the 
compartments are then inspected at discrete points in time. The result of the technique is 
a probability transition matrix, P(t), of the form shown in Figure 6. 

Destroyed wsB1 wsB2 wsB3 wsR1 wsR2 wsR3 
Destroyed 1 p12(t) P13(t) p14{t) p15(t) p16(t) p17(t) 
wsB1 0 p22(t) P23(t) P24(t) p25(t) P26(t) p27(t) 
wsB2 0 P32(t) p33(t) p34(t) p35(t) p36(t) p37(t) 
wsB3 0 P42(t) p43(t) p44(t) P45(t) p46(t) p47(t) 
wsR1 0 p52(t) p53(t) p54<t) p55(t) p56(t) p57(t) 
wsR2 0 P62(t) p63(t) p64(t) P65(t) p66(t) P67(t) 
wsR3 0 p72(t) p73(t) p74<t) p75(t) p76(t) p77(t) 

Figure 6. Form of Probability Transition Matrix for Attrition Simulation Using the 
Compartmental Model Technique 

The HMM technique works differently than the others; it assumes single entities 
traversing the possible system states, with transitions between states governed by 
probabilities. However, our simulation model does not have actual individual force 
strength entities that can be tracked through the system. An alternative is to consider the 
entire system as a single entity that traverses the possible system states.   The potential 
problem with this approach is the huge number of states. For example, if the quantity of 
each weapon system type varies between 0 and 10(11 value levels), and we have 6 
weapon system types, we would have 116 = 1,771,561 possible system states!   A further 
difficulty is that any one state has a low probability of occurrence, creating additional 
computational difficulties. This full enumeration approach would clearly be impractical 
for even the smallest problems. 
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The solution is to aggregate "equivalent" (or nearly equivalent) states so that we can 
describe the essential system state without tracking every possible combination of 
weapon system quantities. The assumption is that certain combinations of weapon 
systems are equivalent to others in terms of simulation dynamics. For example, a current 
weapon system quantity vector of (WB, WB, WB, WR, WR, WR) might be equivalent to 
a vector of (Wf +7, W2 -7, W3

B +7, W,R -7, W2
R + 7, W3

R +1) in determining how the 
remainder of the simulation progresses. Fortunately, we already have a mechanism for 
determining state equivalency via the force strengths. The force strength for side s is 
given by: 

Ss = 
N' 

Yy;w; 
;=i 

i=l,2,3, ..N^SE {R,B} 

We also rescale the V;
s so that the score of the average weapon is always equal to 1.0. 

This allows for more rational period-by-period comparisons, and facilitates state-based 
analysis by narrowing the range of possible values for the force strengths (Anderson and 
Miercort 1989). Let W = [WB, WR] and N = NB + NR. We can compute a scale factor: 

y" v,w, ~ v./ 
a =     '-'.  so that:  V, =  /   are the scaled strength factors. 

Y' w, /a 

For a given simulation scenario, let the maximum force strength of either side be given 
by S^x and the minimum by S^. Divide the interval (S^ - Ss

min) into k subintervals. 
Each subinterval becomes our aggregate state for side s, resulting in a total of k2 system 
states. The parameter k can be varied to evaluate tradeoffs between the number of states 
and the accuracy of the resulting system identification. Figure 7 below is an example of 
the form of the resulting state transition matrix4 for k = 3. 

sB1sR1  sB1sR2  sB1sR3  sB2sR1  sB2sR2  sB2sR3  sB3sR1  sB3sR2  sB3sR3 
sB1sR1 p11 P12 p14 p15 
sB1sR2 p22 p23 p24 p25 p26 
sB1sR3 p33 p35 p36 
sB2sR1 p42 p44 p45 p47 p48 
sB2sR2 p53 p55 p56 p57 p58 pS9 
sB2sR3 p66 p68 p69 
sB3sR1 p75 P77 p78 
sB3sR2 p86 p88 p89 
sB3sR3 p99 

Figure 7. Form of System State Transition Matrix for Attrition Simulation Using 
the HMM Technique 

The blank cells of the matrix are either 0 or s, where e is small relative to the p's 
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Figure 8 provides a sample output from the Attrition Simulation showing the aggregated 
force strengths for Red and Blue. Note the high variability of the outputs. 
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Figure 8. Sample Output - Attrition Simulation 

17 



Model 2 - Mission Simulation 

Background and Framework 

The CAS/BAI Mission Simulation is based on a scenario described in Samuelson and 
Sims (1995). We have added to the scenario the possibility of an aircraft being destroyed 
during a mission (see Figure 9). The objective of the original model is to analyze mission 
performance under various levels of jamming. The more jamming, the longer it takes the 
Forward Air Controller (FAC) to match a plane to a specific target. The more time spent 
in target matching, the less time there is to complete missions before fuel runs out. 
Queueing at the FAC will increase as target matching time and aircraft arrivals increase. 
We assume that the planes are operating in a target and threat rich environment that is 
constant over the simulation time horizon. Aircraft combat missions are limited by the 
amount of fuel remaining. If aircraft have sufficient fuel after the completion of a 
mission they will return to the FAC for another assignment, otherwise they will return to 
base. 

-Yes- 

Arrivals 
(from Base) 

Combat 
Mission 

To Base-< 

/Enough"' 
"^V   Fuel? 

No 
Aircraft Damaged/Destroyed 

Figure 9. CAS/BAI Mission Simulation 

Variables and Logic 

We assume a constant value for the probability of an aircraft being damaged or destroyed 
during a mission (typically 0.0 to 0.25). The duration of the combat mission is described 
by a uniform probability distribution ranging from 3 to 10 minutes. The mission includes 
attack maneuvering, weapons release, and target area escape. Fuel consumption occurs 
at a fixed rate over time and aircraft have about 1 hour of fuel to carry out their mission. 
Aircraft that have completed a combat mission check their fuel. If they have used 55 
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minutes or more of fuel they return to base, otherwise they enter the waiting area for the 
FAC.   The fuel level of each aircraft in the FAC queue is also checked at each 
simulation event time - if they have used 55 minutes or more of fuel they return to base. 
The time required to match targets to a given aircraft is described by the probability 
distributions described below. 

Target matching time and arrival scenarios are paired so that arrivals do not overwhelm 
the FAC. A total of 24 aircraft (a squadron) will arrive during the simulation. Target 
matching time is described by uniform or normal probability distributions. A "no 
jamming" scenario is achieved by the use of an Automatic Target Handoff System 
(ATHS). Our simulations begin with no aircraft except that the first pair of arrivals will 
be at time 0.   The termination condition is when all 24 aircraft have either returned to 
base or been damaged/destroyed. 

Model States 

Unlike the Attrition Simulation, the behavior of a given simulation entity (aircraft) in this 
model structure is largely independent of the other entities. The exception to this is the 
potential queueing at the FAC. To begin our analysis of the model structure, we see that 
aircraft are either "at the FAC", "in combat", "damaged/destroyed", or "returning to 
base". Since the current fuel load is a major part of the event logic, we must also capture 
it as part of the state of an individual aircraft. The best way to handle all of this is to 
discretize the fuel load into, say, quarters. Similarly we can discretize the size of the 
FAC queue (upon time of entry by the aircraft) into something like "light", "medium", 
and "heavy". The result is a state-space model with 18 states (see Figure 10 below). 

FAC Related States 

Light    Med    Heavy 

(V4)    (V4)    (V4) 

(m)   (m)   (m) 

Combat Related States 

(m) (m) (3/4) ( 1 

ReturningN 

to Base 

Figure 10. Enumeration of States for the Mission Simulation 
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In Figure 11 we see a sample output of the Mission Simulation, aggregating state values 
within the four groups shown in Figure 10. 

Planes in Target Matching vs. Time (min) Planes in Combat vs. Time (min) 
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Planes Destroyed vs. Time (min) 
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1 

0.5 

0 
0 50 100 150 

Figure 11. Sample Output - Mission Simulation 

This model structure can accommodate all of our identification approaches. The 
Maximum Entropy and Canonical State Space approaches can operate directly on a state 
(observation) vector defined as in Figure 10. These approaches can also both handle the 
arriving aircraft as input vectors mapped through input transition matrices. 

The Compartmental Model approach operates on a similar state (observation) vector. 
However, due to computational considerations for arrivals, the state vectors need to be 
segregated by aircraft arriving at different times so that each arriving cohort is identified 
separately. The resulting transition probability matrix is similar to Figure 5 but with two, 
rather than one, absorbing states. 

For the HMM technique we can easily construct time-dependent state (observation) 
vectors that are specific to individual aircraft. These vectors take the form of identity 
vectors - a vector of zeros with a 1 in the position indicating the current state - which are 
then used as input to the Hidden Markov Model algorithm. 
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With the exception of the Canonical State Space technique, each identification algorithm 
produces a transition probability matrix of the form illustrated by Figure 12 below. 
Empty spaces indicate a 0 probability. 

D/D   Base    F1/4L   F1/2L   F3/4L   F1L   F1/4M   F1/2M   F3/4M   F1M   F1/4H   F1/2H   F3/4H   F1H   C1/4   C1/2   C3/4   C1 

D/D 1 P P P P 
Base 1 P P P P 
F1/4L P P P P 
F1/2L P P P P 
F3/4L P P P P 
F1L P P 
F1/4M P P P P 
F1/2M P P P P 
F3/4M P P P P 
F1M P P 
F1/4H P P P P 
F1/2H P P P P 
F3/4H P P P P 
F1H P P 
C1/4 P P P P P P P P 
C1/2 P P P P P P P P 
C3/4 P P P P P P P P 
C1 P P P P 

Figure 12. Form of the Probability Transition Matrix for the Mission Simulation 

In contrast, the Canonical State Space technique will produce a generalized deterministic 
state transition matrix. 
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Algorithm Specifications 

General Model 

This section describes the four system identification techniques. Each was used to 
identify both the Attrition Simulation and the Mission Simulation models from sample 
(simulated) data. Each technique estimates a variant of the following general form of 
discrete, Linear Time Invariant (LTI) state-space model structure: 

x(t) = Ax(t-l) + Bu(t) + e(t) 
y(t) = Cx(t) + e(t) 

where / is the discrete time index, v is an M element (noisy) observation vector, x is an N 
element state vector (the number of entities in each element), u is an R element input 
vector, s is an N element system noise vector, e is an M element observation noise 
vector, A is an N x N state transition matrix, B is an N x R input matrix, and C is an M x 
N observation matrix. 

This section provides a detailed mathematical description of each of the system 
identification techniques proposed for this effort, i.e., 

• Canonical State Space 
• Compartmental Model 
• Maximum Entropy 
• Hidden Markov Model (HMM) 

The description includes the algorithm itself, how it is adapted to the selected simulation 
models, and methods for calculation of prior estimates of the model parameters. 
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Canonical State Space Technique 

The algorithms described in this section are based on work by Guidorzi (1982, 1981, 
1975). 

Framework 

Given a set of (noisy) system inputs and outputs: 

u(l),u(2),u(3), u(T) 
y(l),y(2),y(3), y(T) 

where u(t) is an R element input vector and y(t) is an M element output vector such that 

u(t) = u'(t) + d(u(t)) 
y(t)=Y(t)+d(y(t)) 

where d(u(t)),d(y(t)) are vectors of additive, zero mean, uncorrelated noise and u'(t) and 
y'(t) are the underlying noise free inputs and outputs. 

The LTI system is defined as: 

x(t+l) = Ax(t) + Bu(t) t=l,2, T 
y(t) = Cx(t) 

with an algebraically equivalent form: 

M vii R   v; 

J',-(' + vi) = £2;a^// + * + l) + ££^«y(' + *-l)t=U, T 
y=ijfc=i j=\k=\ 

General Algorithm 

The approach uses 4 major phases: 

1. Structural Identification 
2. Parametric Identification 
3. Conversion to Canonical State Space Form 
4. Recovery of state vector 
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Structural Identification 

Determines a set of scalars: vi3 i = 1,2,...M, (I; Vj = N) and Vy, which completely 
determine the canonical structure of A and C, where 

Vy   =  ^ for i=j 
Vij = min(Vi+l,Vj) for i>j 
Vjj = min(vi,Vj) for i<j 

By structure we mean that certain elements must necessarily contain the values 0,1, or a 
parameter (determined via the Parametric Identification phase). Structural identification 
is equivalent to determining the degrees of delay in equation error model structures. 
(This phase alone provides sufficient information to construct C). 

Consider the set of input-output data 

yi(t) yi(t+l) yM(t) yM(t+l) U>W uR(t) 

yi(t+i) 

yi(t+L) 

(v,(t),\ 

y,(t+2) 

y,(t+L+l) 

M(t+l)...|....h/M< 't) >VN 

y.^t+l) 

yxi(t+L) 

it+1)... 

yvi(t+2) 

|u,(t),....|...|u, 

u,(t+l) 

u,(t+L) 

l(t), ) 

UR(t+l) 

uR(t+L) 

Let: 

L](yJ) = (yJ(t),yJ(t+l), yj(t+i-l)) 
Li(uj) = (uj(t),Uj(t+l), Uj(t+i-l)) 

R(8,, 52, 83,...   8M+R)= {LSX (v,),...Lh{ (yM ) | Lg     («, \-LSM+R (UR)} 

S(8i, 82,83,...   SM+R)- R(8J, 82,83,...   8M+R)' R(8I, 82,83,...   SM+R) 

The approach operates on a sequence of matrices, S(8]3 82, 83,...   8M+R) where the 
indices, 8]3 82,83,...   8M+R, correspond to the orders used in the underlying input/output 
data.   The sequence of these matrices is constructed such that the values of the 8^ 
increase monotonically: 

S(2,1,...,1)S(2,2,....,1)....S(2,2, 2) S(3,2,....2) S(3,3,....2)  

5 Note that in our identification of simulation models the system states are all directly 
observable (M=N). In that case we already know that all of the structural parameters vj 
will equal one and this step may be skipped. This also implies that C=I. 
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To each Si (i = 1,2,...M) we can associate a PPCRE (predicted percent reconstruction 
error) calculated as: 

PPCRE, = 100 * (V(L-l) )m I Gi 

Sj = the S matrix where index i has just increased by 1 
A.; = det(Si)/det(S;_i) (Sj_i is the matrix where index i has not yet been increased) 
L = the length of i/o streams analyzed 
(Ti = the standard deviation of the ith output stream y;* 

The algorithm examines the PPCRE in sequence. If the PPCRE associated with the 
matrix S(8i, 52, 8i,...   8M+R), where the last increased argument with respect to the 
the preceding matrix in the sequence is 8,, does not decrease "significantly" with respect 
to the PPCRE for S(8rl, 82-l,.... 8rl,...   SM+R-1) then we fix v; to 8;-2. The sequence is 
then restarted at S(8rl, 82-l,.. 8;-2, 81+rl...   8M+R-1) with index i fixed.   The algorithm 
resumes with 

S(vn,vi2,...., v., v,J+l,.„) 

and continues until all M v; have been calculated. (Note that in the above description, an 
index will not be decreased if it has already been fixed). 

We extended the original Guidorzi algorithm to handle two considerations: 1) the sum of 
the Vj's must be equal to a known previously determined value of N, and 2) it is difficult 
to a priori determine the decrease in PPCRE that should be considered significant. 

Without modification, the algorithm above can produce an N that is either less than or 
greater than the desired value. If N is less than that desired, we can say that the 
algorithm was too willing to accept a decrease in PPCRE as "significant", while the 
opposite is true for an N greater than that desired. To handle this, an outer loop was 
constructed where the initial significance is set relatively high (a difference of 10 in 
PPCRE). If the basic algorithm ends with N too low, the significance is reduced by half 
and the algorithm is restarted. On the other hand, if N is about to become too large, the 
entire algorithm is terminated with the current set of vj's. 

Parametric Identification 

This procedure determines the parameters a^, which are placed into specific elements of 
A, and the parameters ßijk, which are placed into specific elements of an intermediate 
matrix, B . The parameters are determined via least-squares regression. 
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Let: 

Ys = (OW-^Iv,  I - I «i/l-%,   I A,l» Av, I - I Abl-Av, )' 

Rs = R(vs],....vM,vs....,vs) 

Then we solve for ys via 

r,=(R,'R,r%'y(t + v.)   s = i,2,....M 

Conversion to Canonical State Space Form 

The matrices A and C are constructed directly from the parameters already determined. 
A=[Aij] where: 

An 

0 

<Zy 

o   . ..   0 

V/-1 4 = 0 0 

«77V, _ 
aiß   . ■■    aijvjj 0   . ..   0 

(V, X Vi) 

We also have: 
(v, X Vj) 

C = 

1    0 

0   ... 0    1    0 

...   0 

...   0 

0 

t 
1 

t 
0    1    0   ...   0 

T 

(v,+l)     (v.+.-. + v^+l) 

Determination of the B matrix requires the construction of an intermediate matrix, M. 
M is constructed from the parameters, a^ while B is found from B = M~lB as follows: 
M = [My] (i,j = 1,2,....M)where 

-aii2    -ocii3 &iivj 1 -(*ij2 - -°H 0 

-aii3    -am 1 0 0 

Mn = 

1           0 

(Vj X Vj) 

0 

0 

0_ 

Mv = 

0 

0 

0 

(V; X Vj) 

0 

0 
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B 

B 

B M 

B = 
An     -    An 

Al v. A«v. 

Recovery of the State Vector 

The state vector is found as a function of the input-output sequences using the relation: 

x(t) = V(z)y(t)-WZ(z)u(t) 

V(z) and Z(z) contain various degrees of the delay operator, z\ and have structures that 
are determined from N,MJR and the v,'s. 

V(=) 

] 0 

0 

0 

0 

1 

Z(=) = 
zl 

JMax'2 

(NxM) (%.-l)^) 

W is a matrix that contains parameters from the B matrix. 

VA/a*=maX(V;)- 
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w = 

0 ..   0 

*. 0 ..   0 

V 

bx 0 

A. 0    . ..   0 

B = 
V 

0 

-vw+l 0 

..   0 

..   0 
PN_ 

K -v«+l 
0 

V-i *V-vw+l 0   . ..   0 

(N XR(VM-I)) 

No modifications to the general algorithm are required for the simulation identification, 
nor are prior estimates required. 
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Compartmental Model Technique 

The algorithms in this section have been adapted from Seber and Wild( 1989). 

Framework 

Here we assume that our system can be described as a continuous time linear flow system 
with N states. State 1 is assumed to be an external or "sink" state. The state vector 
provides the number of customers in each state. We wish to estimate the fractional 
transfer coefficients ysr which are defined as the rate at which customers are passing from 
state r to state s, divided by the number of customers in state r. (Note that the subscripts 
are reversed with respect to the standard literature on Markov chains.) It can be shown 
that the intensity matrix (or instantaneous transfer-rate matrix), A, will have the 
following form: 

A=      0 Yi2 Yi3  YIN 

0 -2s*2Ys2 Y23  Y2N 

0 Y32 -£s*3Ys3--- Y3N 

0 YN2 YN3  -£s*NYsN 

We use Gk to denote the estimate of the k* unknown ysr; that is, 0] = y12,02 = Yi3, ©N-I 
= 

YIN, 0N = Y23, etc., and that the transition-probability matrix P(t) will have the following 
form: 

P(t)=   1 Pi2(t)   Pi3(t)... PlN(t) 
0 P22(t)     P23(t)-.. p2N<t) 

0 PN2(t)    PN3(t)- PNN<t) 

We assume that we can observe the state vector over T time periods and will estimate the 
transfer coefficients from these observations. Let: 

yjj = the i* measurement on state j 
X|(t) = customers in state j at time t, observed at times th t2,... .tT to produce y^ = Xj(ti) 
yfo = (y,2, yi3, y*N)' = (x2(tO, x3(tj) xN(t,))' 

y = (y(1)',y(2\ ym7=   I **.) 
Xiftl) 

Xn(tl) 

X2(tT) 

X3(tT) 

XNOT)   1 
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Note that state 1 is not included. Use of it would introduce an exact linear dependence in 
the data. It can be derived from knowledge of the other states at time t. 
Let X(t) be the state occupied by any particular customer in the system at time t. Then: 

E[xj(t)] = fX(0)/V(0,/) where M0*)= P1"^)= JI X(°)= r^ 
r=l 

Since we are assuming that the Markov transition probabilities are time independent, 
then pjr(0,t) = pjr(t), where pjr (t) is the j,r* element of the transition probability matrix 
P(,). It follows that: 

E[Xj(t)] = Irxr(0)pjr(t) YsXrWPjriO 

We can characterize the expected system response as: 
f(9) =    [ E[x2(ti)] 

E[X3(t,)] 

EMti)] 
E[x2(t2)] 
E[x3(t2)] 

E[xN(t2)] 

E[x2(tT)] 
E[X3(tT)] 

E[xN(tT)]   ] 

Let s,j = Xj(ti) - E[Xj(ti)] and V(9) be the covariance matrix of the s,j 

The terms of V(9) are defined as follows: 

var[Xj(t)] = JX(0)/>y(/) (1 - pjr(t)) (diagonal elements) 

COv[Xj(t), Xk(t)] = - |>r(0)/V(OPkr(t) 

cov[Xj(t), xk(t + x)] = Pkj(x)var[Xj(t)] + 2^ cov^t), xr(t)] p^x) 
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General Solution Technique 

To solve for the ySr (values for 9k) we use an iterated two stage estimation procedure. 
That is, for  i = 1,2,...., obtain 01+1 by minimizing: 

via the following series of Gauss-Newton update steps: 

e'+i = ei + [vfce'yv'ce0) vf(&)]-] vq&yv\e°)\y - f(e])] 

Upon calculating optimal parameter values for a given V(0°), a new V is computed using 
the new parameters. The optimization is then repeated using the revised V(0 ). The 
process continues until convergence is achieved (detailed steps are shown below). 

To compute f(0') and Vf(0') we can use a spectral decomposition where 

A = SAS"1 

S is a matrix such that the r* column is a right eigenvector of A corresponding to the 
eigenvalue, \, and A = diag(A.i ,X2,... A.N). It can be shown that 

P(t) = eAt = Se'V 

where eAt = diag(exu, eX2t,... e""). This allows use to compute f(0") via 

f(t) = P(t)x(0)' 

It should be noted that the above decomposition strategy is not robust. In some cases the 
decomposition does not exist; S may not be invertible (is singular) or the matrix P can 
contain complex numbers. (Indeed both of these situations occurred frequently with both 
of our simulation models). Sophisticated numerical approaches have been developed to 
handle these types of situations (see for example: Bates and Watts, 1988). Practically 
speaking, the developers of MATLAB (The Mathworks, 1999 - the implementation 
language of the algorithms in this study) have worked out these complexities in their 
built-in function "expm(At)" which computes eAt without a spectral decomposition. 

It remains to define the elements of Vf(0'). It can be shown that in the case of known 
initial conditions and no inputs: 

3x(t) I dQk = eAt * [A(k) eAt] x(0) = SB^S"1 x(0) 
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where A^ = SA / 59k and "*" denotes the mathematical convolution operator. Note that 
for a given k, A(k) will be all zeros except for a 1 in the position indicated by k = (s,r) and 
a -1 in the position A(r,r). The matrix B00 is defined with elements: 

bsr
(k) = gJXtf) 

Mt)=(e^t-eXl,)/(A.s-^r)   K*\T 
te " A.s~A.r 

The terms gsr
(k) are elements of the matrix, G(k), defined as 

G(k) = [S-i AWS] 

As with the computation of expected values, the above approach relies on the S matrix of 
eigenvectors, and suffers the same potential weaknesses. Again we can rely on the 
MATLAB developers to provide a numerical solution, which they have done with the 
built-in function "conv2(A,B)" which provides the convolution of two matrices A and B. 

Simulation Estimation Algorithm 

Prior Estimates 

Let: 
Yr = the rth element of the observation vector at the beginning of time period t in the j1 

simulation run (amount of "material" in compartment r). 
ds

t
r = the amount of flow from state vector element (compartment) r to state vector 

element s during time period t in the j* simulation run. 
At = the time between simulation observations (a constant value) 

In the Mission Simulation we know the values of the f[ since we are tracking 

individual aircraft as they move from state to state. In that case we can easily estimate 
the fractional transfer coefficients, /„, by using the average historical rate: 

T  —1 
nruns   j     jsr    / v v «/ 

A _ j = \ 1 = 1 / LUIlj 

/ sr nruns 

In the Attrition Simulation we don't know the specific state to state flows by aircraft so 
we instead estimate the fractional transfer coefficients via a regression based technique. 
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Let: 

S0.(t) = (Y,r+u-Y9
r)/&        t=l,2,....Trl;j = l,2,...nruns;r=l,2,...N 

F;=(y; + 7,;u)/2 t=l,2,....Trl;j = l,2,...nruns;r = 2,...N 

The S .(/)can be interpreted as the average change in state r per unit time during period t 

of run j, and the YJaxe the average state values during period t of run j. We can form 

rt =<x9
2J9\.-rf); Yj HY^Jy.JrJ ; Y^iY^.J^y- 

and 9 = (<9,, 82,....#0V-,Xjv-i))' is the vector of unknown rate coefficients whose values we 
seek (the nondiagonal elements in columns 2 through N of the rate matrix, A). Some 
manipulation is still required to set up the regression matrix to account for the balancing 
conditions in each element (net increase = flow in - flow out). 

Let the regression matrix be 

Y=(F\72,...YNy 

where each F'has (N-1)*(N-1) columns. The nonzero columns of Yr are constructed as 
follows: 

• if r = 1, the first (N-1) columns are set to Y 

• ifr>l: 
1. Divide the columns of Yr into N groups, where the first group has (N-1) columns, 

and the (N-l) remaining groups have (N-2) columns. 
2. Modify Fby removing the (r-l)st column; call the resulting matrix J%_, and call 

the removed column, 7.(r_t). 
_th 3.   Set the r  group of columns in Yr to Y, lr-\- 

4.   Set the (r-l)st column of every other group in Yr to - Y,^^. 

We can now define the total set of equations as: 

Y0 = S 

We can solve for 6 using non-negative least squares. Non-negative least squares is 
similar to ordinary least squares but constrains the coefficients to be non-negative. 
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Algorithm 

In the Mission Simulation, the algorithm is performed on each cohort of arriving aircraft 
while in the Attrition Simulation we do not need arrivals to perform the identification. In 
that case we have just 1 "arriving" cohort, the initial weapon systems. 

Let H be the number of cohorts in the simulation6. 

Forh = l:H 

a) Set the time indices of the data so that t=l corresponds to the arrival period of 
cohort h 

b) Select an initial set of prior estimates, 3 , for the unknown elements of A. 
c) Set the composite rate matrix, Ah, to zeros 

For j = l:nruns 

a) 5°={M/>o;'=U..(tf-i)2};ev= e°;a=o 
b) Compute the spectral decomposition of A(9°), i.e., find A and S or an 

equivalent technique to find P(t) = e l for t = 1,2,... T 
c) Compute E[x(t)] (via P(t)'s ) to obtain f(9°) terms 
d) Compute V(0°) 
e) objt = objv = (y- f(e°))'V"l(e°) (y- f(90)); objtold = objvold = inf.; 

searchtolerance = objv/10000 

While (objvold - objv > searchtolerance) 

objvold = objv 

While (objtold - objt > search_tolerance) 

objtold = objt 

Step 1: Compute dx^V  a  via convolution method for k = 
/d6k 

l,2,...length(Ga) to obtain Vf(9a) terms fort= l,2,...Tj 

6 In the Mission Simulation the algorithm is performed separately on each cohort of 
arriving aircraft while in the Attrition Simulation we do not need arrivals to perform the 
identification. In that case we have just 1 "arriving" cohort, the initial weapon systems. 
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Step 2: Compute 0a+1 using a modified Gauss-Newton update 
formula and V = V(6V): 

A0 = [Vf(ea),\rl(ev) vf(ea)]"! vf(ea),\rl(ev)[y - f(ea)] 

Ensure nonnegative 9: 

amax = max : 9a + a A3 > 0 
0<ar<l 

ea+1 = ea + cwAe 

Step 3: 
a) Compute the spectral decomposition of A(6a+1) (A and S) 
or an equivalent technique to find P(t) = eAt for t = 1,2,... T 
b) Compute E[n(t)] (via P(t)'s) to obtain f(9a+1) terms 

Step 4. objt = (y- f(6a+1))' V1(9V) (y- f(9a+1)); a= a+1 

end while 

ev = ea+1
;e°= ea+1;a = o 

Compute V(9V) 
objv = (y- f(9v))' V-'(9V) (y- f(9v)) 

end while 

Add in matrix values: 
Ah = Ah + A(9v) 

end nruns 

Compute final weighted average composite rate matrix: 

Ah = Ah/nruns 

} 

The identified system is the sum of the identified cohort systems, appropriately indexed 
for the current time. 
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Maximum Entropy Technique 

The Maximum Entropy technique is based on methods described in Golan, et. al.. (1996). 

Framework 

In this case we will model our simulations in the form of the following LTI system: 

x(t)=Ax(t-l) + Bu(t) + 8(t)    t =2,3, T 

where x(t) is a known N x 1 state vector providing the numbers of entities in every state, 
u(t) is a known R x 1 input vector providing the number of entities entering each state, A 
is an unknown N x N state-transition matrix, and B is a known, or partially known, N x R 
input transformation matrix. The terms s(t) are unknown N x 1 vectors of system errors. 
We assume that the s(t) are distributed uniformly around 0 and their covariance matrix is 
unknown. 

In the Attrition Simulation, R=N and B=I, so that there are no parameters in B to 
estimate. In the Mission Simulation R=l, and B is an N x 1 vector of probabilities 
mapping the entering plane to one of the "queue states". Therefore, B will have 
"queueStates" number of non-zero entries, since we assume that the plane arrives with a 
full tank of fuel. 

Define the following discrete support points: 

Zsr        =[Zsri, Zsrf Zsro] s = 1,2,..,N; T = 1,2,... ,N 
zbr      = [zbr,, zbr2, zbrX)b] r = 1,2,... N 
ve

r(t)    = [vE
r](t) v

e
r2(t) vE

rE(t)] r=l,2,...N;t = 2,3, T 

The discrete support points have corresponding probabilities: 

Psr =[psrl,Psr2  PSTD] S = 1,2,..,N; T = 1,2,... ,N 
pbr      = [pbrl, pbr2,....pbrX)b] r = 1,2,...N 
we

r(t)   =[we
r](t)w

e
r2(t) wE

rE(t)] r= 1,2,3,...N;t = 2,3, T 

such that: 

a*       = Zsr Psr' s=l,2,..,N;r=l,2,...,N 
£r(t)     ^fjw^t)' r= 1,2,3,...N;t = 2,3, T 
bd       =zbrpbr' r=l,2,....N 
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Then let: 

lD=[l,l,....l] (vector of length D) 
lDb = [1 ,1,... 1] (vector of length Db) 
1E = [1 ,!,...!] (vector of length E) 

The probabilities must also satisfy: 

loPsr' =1 s=l,2,..,N; r=l,2,...,N 
lobpb,' =1 r=l,2,...,N 
we

r(t)lE'=l r = 1,2,3,.. .N;t = 2,3, T 
0<psrk<l s=l,2,..,N; r=l,2,...,N; k=l,2,...D 
0<pbrk<l r=l,2,...,N; k=l,2,...Db 
0<vfA(t)*\ r=l,2,..,N; t=l,2,...,T; k=l,2,...E 

Now also define prior estimates (relative weights) corresponding to each of the 
probabilities defined above: 

qSr 
= (qSri,qSr2 qSrü) S = l,2,..,N;r= 1,2,...,N 

qbr = (qri,qr2 qrDb) r=l,2,...,N 
q€

r{t) = {qc
rX{t\q

e
r2(t\...qrE{t)) r = 1,2,..,N; t = 2,3,...,T 

7 
We can then form a constrained nonlinear mathematical program to determine the psrk, 
pbrf, ,and the w£

rk(t): 

N    N    D „ A'   Db nU NET we ,f\ 

Minimize:  ^YLP**^ + ?L1LP***& + TIZ*M*^ 
s=l r=\ k=\ Hsrk r=\ k=\ ^Vrk r=\ k=\ (=2 Hrk\l) 

Subject to: 

x(t) = [ZP]x(t-l) + Bu(t) + VftMt) t = 2,3,... T 
lDPsr'=l s=l,2,..,N; r=l,2,...,N 
lobPr' =1 r=l,2,...,N 
we

r(t)lE' = l r= 1,2,3,.. .N;t = 2,3, T 
0<Psric s=l,2,..,N; r=l,2,...,N; k=l,2,...D 
0<pb* r=l,2,...,N; k=l,2,...Db 
0<w^t) r= 1,2,..,N; t = 2,3,...,T; k= 1,2,...E 

7 Assume that terms of the form x ln(x) are equal to 0 for x = 0. 
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where: 

ZP.r= r* "column" of [ZP] = diag(z]r, z*,... .zNr)*(plr', p2/,.... PN/)' r=l,2,....N 

B = diag(zbl5 zb2, ...zbN)*(pbi', pb2*,... pb^)' 

V*(t) = diagCv^t), vE
2(t), .... v

e
N(t)) t=2,3,....T 

we(t)=( wEi(t)', wE
2(t)',.... w

eN(t)7 t=2,3,...T 

In the Mission Simulation we also constrain the columns of A and B to sum to 1.0: 

N   D 

TJTJ=SrkPsrk=l        1=1,2,... N 
s=\k=l 

N Db 

YjYjzbskPbsk=l 

s=\k=\ 

Simulation Estimation Algorithm 

Prior Estimates 

Attrition Simulation 

To find the support points, z^, for the probabilities, psrk, we will perform regressions on 
the state element values in each simulation run. 

We use the convention that state 1 represents the "sink" (destroyed weapon systems). 
With six weapon system types, three on each side, N=7 and the system transition matrix 
must be of the form shown in Figure 5. 

Let: 

Y,r = the r* element of the observation vector in time period t in the j* simulation run; 

r=l,2,...N;j = l,2,...nruns;t=l,2,...Tj 
Y, = (Xi -YUjJiJi^y ; 1=2,3,...!- J' = (T2j,T3J ,..TTjj)' 

xtj = (Ytfj^,....Y*),XtJ = diag{xtj,xtjm\ ,....xtjiri N_x) , where m, = (mil,ml2,...miN.1) 

and 
fl     ifi,j<NBOR i,j>NB 

mu =< J      -1  otherwise 
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is the "mask" function to enforce the matrix form in the table above. (NB is the number of 
weapon system types on the "Blue" side.) Then if 
XJ-=(XlJ,X2J,..XTj,.)\ a„ ={aj2,aii,....ajNy,   Aj = (<',<',..<')', 

for each run j we can specify: 

XjAj = Yj 

which we can solve for A using nonnegative least squares. To attain current estimates of 
the elements of A' we again utilize our mask vector so that: 

Al ={\,Ai),mdAi =(0,4/n/1,^>/2,...^.w,iV_1)fori = 2,3v..N 

Mission Simulation 

To find the support points, z^., for the psrk we can proceed as follows. Let: 

Y'j = the r* element of the observation vector at the beginning of time period t in the j* 

simulation run (amount of "material" in compartment r). 
dy = the amount of flow from state vector element (compartment) r to state vector 

element.? during time period t in the j* simulation run. 
In the Mission Simulation we know the values of the f* since we are tracking 

individual aircraft as they move from state to state. In that case we can easily estimate 
the state transition coefficients of a given runy by extracting the average historical rate 
from the simulation: 

<=TL\  s=l,2,...N;r = 3,...N 

/=1 

Note that states 1 and 2 are "sinks" corresponding to the "destroyed" and "returning" 
states. Therefore we already know that columns 1 and 2 are all zeros with the exception 
of a "1" in the 1st and 2nd rows respectively. 

Ai=(l,0,ai), 

Ai=(0,Ui), 

and A{. = (0,0, aJ
lm) for i = 2,3,...N 

Note that the resulting values will be average transition proportions between the values of 
zero and one. 
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To get estimates for the support points zbrk for the pbrk we can use the historical average 
proportion of aircraft that enter the simulation in each state. Let: 

BJ = {b{,bJ
2,...bJ

N) where bj is the proportion of aircraft entering state / during run;. 

B = {B\B2,....Bnrum) 

Our mean estimate for parameter jj = 1,2,...N, is the mean of the values in column/ 
Similarly, a standard deviation can be computed for each parametery from the data in the 
corresponding column. From these, we can calculate a 95% (say) confidence interval for 
each parameter. One support point will correspond to each end of this confidence 
interval while any additional support points will be evenly distributed over the interval. 

Attrition and Mission Simulation 

Let A~ = (A\ A2,...Annms)bc a matrix where each row / represents the vector of 
parameters estimates from run /'. Our mean estimate for parameter j, j = 1,2,.. .N*N, is 
the mean of the values in column/ Similarly, a standard deviation can be computed for 
each parametery from the data in the corresponding column. From these, we can 
calculate a 95% (say) confidence interval for each parameter. One support point will 
correspond to each end of this confidence interval while any additional support points 
will be evenly distributed over the interval. 

We can also use our statistical model to find a range of support points, vE
r(t), for the 

noise terms, e(t). Let e£be the residual term for the r'h element from they* simulation 

run at time t. The residual is the difference between the observed simulation value, Y,J , 

and the estimated value x\, resulting from a model whose parameters are estimated as 

described above. We can set an upper support point, vE
rE(t), to max{abs{er

tj)) and a 

lower support point, v£
ri(t) to -max(abs(er

0)), with any other support points distributed 
Q 

evenly across the so defined interval . 

We set the qsrk, qbA, and qe
rk(t) to 1/D, 1/Db, and 1/E, respectively, to provide uniform 

weights for the support points.   We still need initial estimates of the psik, pbrk, and 
we

rk(t). These are found by solving a linear programming version of the problem 
("linprog" in the MATLAB Optimization Toolbox). That is, we formulate the constraints 
to the problem identically to the setup for the nonlinear programming version, but instead 
minimize a linear sum of the probabilities. 

8 In practice, we found that the algorithm behaves better when we also put a floor on the 
values of the ve

rE(t) of say, 1.0, rather than 0. 
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Algorithm 

Step 0: 

a) Set D, Db, and E, the number of support points per element of each type. 
b) Setr = max(7\) 

j 

c) Set the support weights: qsr = (q^, qsr2 qsrü) ( s = 1,2,..,N; r = 2,3,... ,N); qbr = 
(qrl,qr2 to) (r = 2,3,...,N);   9r'(0 = (^i(0,^(0,-^(0)(r = 2^,..,N,t = 
2,3,...,T) to 1/D, 1/Db, and 1/E respectively. 

d) Using the data from the nruns simulations, determine the support points: ^=0^,, 
Zs.2 zsrD](s=l,2,..,N,r = 2,3,...,N);zbsr=[zrI,zT2 z^] (r = 2,3,...,N); 
vE

r(t) = [vE
rl(t) v

E
r2(t) v£

rE(t)] (r = 1,2,3,...N, t = 2,3, T) 
e) Set the composite matrices, A and B, to all zeros 

for j = l:nruns 

{ 
Step jl. From the simulation data in iteration,;, Ytj = {YyJtj >••■ -Ytj )anci Uj, t - 
l,2,...Tj, construct the constrained nonlinear mathematical program that, when 
solved, will provide the values for: psr = [psrl, psr2 psrD] s = 1,2,..,N, r = 
2,3,... ,N; pbr = [prl, pr2 PrDb] r = 2,3,...,N; w^t^ [w£

rl(t) w
E
r2(t)  

wE
rE(t)] r = 1,2,3,. ..N, t = 2,3, Tj.   Let Aeq be the resulting constraint matrix 

for all equality constraints and beq the corresponding right-hand side vector. To 
determine an initial solution, solve the linear programming model: min cxO 
subject to AeqxO = beq, where c is a vector of all ones. The initial estimates, xO, 
are taken from the resulting solution vector 

Step j2. Use the MATLAB "fmincon" nonlinear programming algorithm (large 
scale version) to solve for the unknown parameters. Use the results to construct 
the posterior matrices Aj, B}. 

Step j.4. Set A = A + Aj, B = B + BJt 

} 
Final Step. Calculate the final estimated posterior matrices: A=A/nruns, B=B/nruns. 
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HMM Technique 

The algorithms in this section are based on work by Elliot et al. (1997). 

Framework 

Here we consider a discrete Hidden Markov Model (HMM) of the following form: 

Xt+1 = AXt + st+1 t = 0,l,...T-l 
Yt+1=CXt + et+1 t = 0,l,...T-l 

where: 

X, eSx= {g,,g2,,....gN} ;gr = (0, ...1,0....,0)' (vector of O's with 1 in 1thposition) 
Y, eSY = {fi, f2,,... 4i} ; fr = (0,... 1,0... .,0)' (vector of O's with 1 in i* position). 

Accordingly: 
lNXt=l 
1MY,= 1 

where ln is a row vector of ones with dimension n. A and C are matrices of transition 
probabilities, such that: 

N M 

st and e t are driving noise and measurement noise in the form of Martingale increments 
that satisfy: 

E[*|+1] = 0    E[e^] = 0     lNe, = 0 lMe, = 0 

Et+i = diag(AXt) - AdiagXtA 
en-, = diag(CXt) - CdiagXtC' 

Recursive Estimators 

The revised estimates A.^,0^ of the parameters A^., Csr at time t can be determined via: 

Asr(t) = r'(J"]/fnr\ l<r<N;l<s<N 

1 < r < N; 1 < s < M-l 

>,(0,r) 

A) AM) 

5=1 
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where: 

J" = the number of jumps from state grto state gs up to time t 

0,+l = the number of occasions up to time t for which the Markov chain X has been in 

state gr (occupation time) 
T" = the number of times up to time t that the observation process is in state fs given the 
Markov chain at the preceeding time is in state gr (state to observation transitions). 
Yt(Ht) = the expectation under the change of measure of the random variable (vector 
process) Ht 

Let: 
Cj = the jth column of C 
aj = the j01 column of A 

Then define yt,t( J? ),Yu( Or, ), yu( T"), via the recursive functions: 

Y<+1,t+i(.0= Zcy(r,+I)( YU^'sto + cr(Yt+1)(qt,gr)asrgst = 0,1,2,...T-l 

Y«+i(^T,) = lNY.+i,t+i(^,) t = 0,l,2,...T-l 

Yt+M+1(0;+1)= ^.(7^)^(0; jgfo + cr(Yt+1Xq;gr)ar t = 0,1,2,...T-l 

Yt+i(0;+1) = lNY«+M+i(0;+1) t = 0,l,2,...T-l 

yx+Ut+l(Ti:i)= Xc/FJly./r)'^ + M(qtgr)(7;+1fs)csrar        t = 0,1,2,...T-1 

ym(TZ ) = 1N W«^* ) t= 0,1,2,...T-l 

where qt+1 = £cy (7f+1) (q^;   q, = (qt(gi), qt(gN))' t = 0,1,2,... T-l 
7=1 

The qt(gr) are the unnormalized conditional probability distribution for state r at time t. 
Thus the normalized estimates are: 

P,(gr) = -N  
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Simulation Estimation Algorithm 

Prior Estimates 

Let Y,r be the Vth element of the observation vector at time period t from the j* simulation 

run (indicator for state r). Then we can define the elements of the prior transition matrix 

A as 

A„ = 

I I>(7;,y,:u) 
7" ■ N  nruns    J 

IIlA^y,:,,,) 
.5=1     /=1    1=2 

[l iff, =i,r2=i   __£    .  , 
where A(7,,70 = L     , (AND function) 

[0 otherwise 

Let q0j be the prior estimate for the state vector in period 0 of the j* simulation run. Note 
that YIJ5 the first observation, is one period later; that is, after a pass through the 
transition matrix. To properly handle this, we define a "dummy" initial state, say, N+l. 
We set up the model so that at time 0 we are in state N+l with probability 1 and that we 
will transition to the state observed in period 1 with probability 1. Thus, the (N+l)s 

element of qoj is set to 1 and all other elements of the vector are set to 0. We add row 
N+l and column N+l to our prior matrix, Ahat. The new row and column contain zeros 
with the exception of the k,h row of the (N+l)st column, which is set to 1. Similarly, we 
add an (N+l)st column to our Y data containing all zeros. Now the algorithm will 
perform properly for our situation. 

In our state space model of the Attrition Simulation we do not have "simulation entities" 
in the sense of multiple interacting entities traversing states. Instead the system itself is a 
single entity that traverses possible Red/Blue force strength combinations. We know the 
initial state since we always know the initial Red/Blue force strength. The Mission 
Simulation is somewhat different. We know the historical initial state of each entity 
(aircraft) in the simulations from the "statesByPlane" output file. However, in our state 
space model, we do not know the precise starting state of an aircraft arriving at an 
arbitrary time in the trajectory ofthat model. In that case, to determine a starting state 
we must make use of recorded frequency data regarding the states which aircraft enter . 
For additional fidelity, these probabilities can also easily be made conditional on the 
number of aircraft currently in the model. 

In effect, a pseudo "B" matrix. 
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Algorithm 

Step 0: 
a) Set asr = A„ (1 < r < N; 1 < s < N). For the Attrition Simulation: asr = 0 (1 < r < N+l; 

s =N+1), asr= 0 (r = N+l; 1 < s < N+l; s ■*■ k), akN+, = 1, where k is the observed state 

in time period 1. 
b) Set the weighted average composite transition matrix, A, to zeros. 

Forj = lrnruns 

{ Step jl: Initialize the recursive elements: 

Yo,o(00
r) = 0(l<r<N),and 

yo,o(^o") = 0(l<r<N;l<s<N) 

qo = qoj 

Step j2: For t = 1,2...Tj, recursively update the estimators: 
Tt,t(^"'),Tu(ö;),and qt 

Stepj3: Update the period Tj estimates of Asr via: 

~   =rTj\ T
J
J
/ l<r<N;l<s<N 

Step j4: Add weighted estimates to the composite transition matrix. For each 
column, r, perform the following update: 

*,=«,+(£W- r=l,2,...N 
i=i 

Final Step:   Compute the final weighted average composite matrix by columns: 

r=l,2,...N 
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Test Plan 

Cross Validation Testing Overview 

To quantitatively estimate and compare the relative performances of the different 
algorithms, we use a test plan and analysis approach based on the statistical technique of 
model cross-validation. The general technical approach is as follows. 

1. We evaluate the algorithms under a variety of simulation scenarios. A scenario 
defines the inputs and parameters of the simulation models. The different scenarios 
are outlined in the following section - "Simulation Scenarios". Each scenario is run 
3 times, each time with a different "seed" (starting state) for the random number 
generators. The seeds were obtained sequentially from a table of random digits 
(KEF, 1984). 

2. We use the Attrition Simulation and Mission Simulation models to generate multiple 
data sets, or sample realizations for each scenario. Each scenario/seed within a given 
simulation model produces 11x10 simulation output data sets (11 different data 
files, each containing the outputs of 10 simulation runs). 

3. These 11 data files are presented as training data to each of the four algorithms in 
Step 3. That is, each algorithm is used 11 times to produce 11 identified systems. 
Each system identification utilizes the outputs of 10 simulation runs. 

4. We next use each fitted model (identified system) to predict outputs in each data file 
not used to fit it. (This is a variation of the technique of model cross-validation.) 
For probabilistic fitted models (HMMAttrition, HMMMission, EntropyMission, and 
CompartmentalMission), the predictions are the frequency distributions of the 
outputs over 100 runs of the identified model. Otherwise the predictions are the 
outputs of a single run of the model. 

5. The actual values used for comparisons are the frequency distribution of outputs 
from the simulation runs in the other 10 data files. Generally speaking, since 11 data 
files were created in Step 2, the number of models fit to them is 4 x 11, and the 
number of predictions made is 4 x 11 x 10 (for each seed of each scenario of each of 
the two simulation models). 

The general approach above is modified somewhat in the case of the Canonical State 
Space algorithm. Recall that this approach requires a relatively rich set of inputs and 
outputs to operate upon. However, none of the other algorithms require inputs. (The 
Mission Simulation is defined as always having arriving aircraft/inputs, but the arrival 
pattern is not used directly by algorithms other than the CanonicalMission algorithm. In 
that case the algorithm uses an "enhanced" arrival set with extra aircraft.) This presents a 
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problem when comparing the absolute differences in means generated by each algorithm, 
the scale of the outputs is different because of the differences in inputs (weapon system 
reinforcements or extra aircraft) that arrive during the course of the simulation. We 
resolve this by using two simulation data sets for the CanonicalAttrition and 
CanonicalMission models. One set is used for training only, while the second data set is 
used for testing the identified model. The latter is the same data set used to test the other 
algorithms. 

Testing of Model State Matching 

In the Attrition Simulation, the outputs evaluated are the Red and Blue force strengths 
over time. The system identification algorithm typically operate on a state vector of 
force strengths by weapon system type (except for HMMAttrition), however, the outputs 
of concern are still the aggregate force strength on each side.    The rationale is that the 
HMMAttrition algorithm can only operate on a state framework defined by the aggregate 
Red/Blue forces strengths. To maintain comparability between all 4 algorithms we must 
use this same metric in each case. 

In the Mission Simulation, the outputs evaluated are the aircraft populations in each state 
of the model over time. 

The key metric is the absolute differences in mean output values, over time, and also 
averaged over all time periods. In deterministic models, the mean value will simply be 
the single output value. A secondary metric is the average differences in standard 
deviation, over time and also averaged over all time periods. (This metric applies mainly 
to probabilistic models). The rationale for choosing these metrics is to provide a 
consistent and relatively simple means of comparing the distributions of the model output 
to the distributions of the simulation outputs. 

Testing of Model Based Decisions 

We would also like to see if the identified models would lead a decision-maker (person 
or higher order software module) to the same conclusions as would the underlying 
simulation model. 

In the Attrition Simulation the key outcomes tested are: 

1. Which side is ahead at combat termination (who wins)? 
2. How long before combat termination is achieved? 

In the Mission Simulation the key outcomes tested are: 

3. How many missions are completed? 
4. How many aircraft are destroyed? 
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We also use cross validation methods for these tests. For (1) the metric will be the 
fraction of times that Blue wins in the 11 models compared to the fraction of times that 
Blue wins in each of the 10 comparison data files. For (2) the metric is the absolute 
differences in termination time, both averages and standard deviations. For (3) and (4) 
we also measure the absolute differences between models and simulations, both averages 
and standard deviations. 

Simulation Scenarios 

Both simulations provide a large number of parameters that can be adjusted to describe a 
desired scenario. Rather than trying every combination of every parameter against each 
other, we vary parameters individually against a baseline. This seems to be a reasonable 
compromise between thoroughness and practicality. For example, using an all 
combinations approach with 6 parameters, each having 3 possible values, we would have 
to run 36 = 729 different simulation scenarios. Under our approach the example would 
result in 6x3-6=12 simulation scenarios. (The minus 6 is due to the baseline 
simulation using 1 value from the domain of each parameter.)  We actually wind up with 
8 scenarios for the Attrition Simulation and 9 scenarios for the Mission Simulation as 
described below. Each scenario is run 3 times with 3 different random number seeds. 
Baseline values are shown in bold face font. 

Attrition Simulation 

Kill Probabilities 

Scenarios examined include the following probability distributions: 

1. uniformly distributed between .01 and .05 (Low) 
2. uniformly distributed between .01 and .10      (Mixed) 
3. uniformly distributed between .05 and .10 (High) 

There are 9 kill probability values in each model. 

Inter-Event (firing) Time Distributions 

The mean inter-firing time for each weapon system type is uniformly distributed between 
10 and 20 time units. The times chosen are somewhat arbitrary. The objective is to 
obtain a mixture of lethality factors (see below) through randomization, but to keep 
simulation results within the same order of magnitude. Distributions include: 

1. LogNormal (std dev. = mean/2) 
2. Negative Exponential 

There are 9 firing time distributions in the model. 

48 



Starting Force Strengths 

This refers to the aggregate Red/Blue force strengths at the beginning of the simulation. 
We vary starting force levels because the variability of the force strengths for small units 
is much greater than for large units. With a small unit, a few probabilities 
simultaneously going in the "wrong" direction can spell the difference between victory 
and defeat. Accordingly, relative changes in overall force strengths may vary widely 
from one period to the next. The levels are: 

1. Low (10 weapons per type, 3 types per side) 
2. High (50 weapons per type, 3 types per side) 

Note that because of the differences in the firing times and kill probabilities it is usually 
the case that to achieve equal starting forces the weapon system vectors on either side 
must be different. An initialization routine in the model takes a starting guess for 
weapon system quantities (as given above) and then perturbs them to achieve equal initial 
force strengths.   This also affects the precise weapon quantities that achieve "low" and 
"high" force strengths. 

Termination Conditions 

1. Absolute Decision Rule - Combat termination occurs when the force strength (of 
either side) reaches a given threshold value (1/2 the starting strength). 

2. Proportional Decision Rule - Combat terminates when the force ratio reaches a 
specified threshold value (two to one). 

3. AOP Rule - Combat terminates when the force strength crosses either the absolute or 
proportional threshold. 

4. AAP Rule - Combat terminates when the force strength curve crosses both the 
absolute and proportional threshold . 

The net result is 8 different scenarios for the Attrition Simulation. 

Mission Simulation 

Probability of Aircraft Damaged/Destroyed 

Each aircraft mission exposes the aircraft to potential damage/destruction. The per 
mission probabilities are: 

1. .00 (None) 
2. .10 (Med) 
3. .25 (High) 
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Target Matching Time/Number of FAC 

Target matching time, the number of forward air controllers (FAC), and the arrival 
patterns are arranged so that arrivals do not overwhelm the FAC. A total of 24 aircraft (a 
squadron) will arrive during the simulation. Target matching time is described by 
uniform or normal probability distributions as follows (parameters in minutes): 

Environment FAC time distn.     # FAC     Arrival Pattern 
heavy jamming 
moderate jamming 
heavy jamming 
moderate jamming 
no jamming (ATHS'") 10\ 

Normal(10,2) 1 
Normal(5,l) 1 
Normal(10,2) 2 
Normal(5,l) 2 
Uniform(.5,1.5) 1 

2/10 minutes 
2/5 minutes 
2/5 minutes 
2/2.5 minutes 
2/minute 

Discretization of States 

To fit the Mission Simulation within our model framework we divided up the queue sizes 
and current fuel loads into discrete states. We can vary the level of discretization to 
measure the effects on model identification. The following combinations are examined: 

Fuel States 
5 
4 
3 

Queue States 
4 
3 
2 

The net result is 9 different simulation scenarios in the Mission Simulation. 

10 Automatic Target Handoff System 
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Detailed Results 

The analysis of results first examines the relative performance of the four algorithms in 
identifying the simulation models. The analysis focuses on the cross-validation statistics 
for both state matching and model-based decisions. Using the principle of cross- 
validation discussed in the Test Plan, we compare the behavior of 11 identified models to 
the average behavior of each of the 10 sets of 10 simulations that were not used to 
identify the model. 

Mission Simulation 

For all but the Canonical State Space algorithm, whose behavior is deterministic, the 
behavior of the models is determined by averaging across 100 stochastic runs. 

State Matching 

The first test reports the average absolute difference between model and simulation state 
values (quantities of aircraft) over all time periods of the simulation. Recall that in the 
Mission Simulation the state vector contains the quanties of aircraft in the following 
states: Returning (out of fuel), Damaged/Destroyed, Target Matching, and Combat. 
Target Matching is broken down further into "Queue States" x "Fuel States" number of 
substates, while Combat is broken down into "Fuel States" number of substates. For 
most scenarios, the result was a total of 18 states. The results were then averaged across 
all nine scenarios to produce the results displayed in Figure 13 below. 
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Figure 13. Average Absolute Differences in State Values - Mission Simulation 
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We see that the Maximum Entropy ("Entropy") technique is superior, with the 
Compartmental Model ("Compaitmental") and HMM techniques contending for 2nd and 
3rd place. The Canonical State Space ("Canonical") technique is not a contender in this 
test. If we break the analysis down by scenario (not shown): the Compartmental Model 
technique was best for all three random seeds of one scenario, the HMM technique was 
best for all three random seeds of another scenario, while the Maximum Entropy 
technique was best for all other scenarios (21). 

The Mission Simulation models tended to have very little variability in state values 
across different simulation runs for a given scenario. Thus, the Canonical State Space 
technique, being deterministic (with zero variability), was closest in terms of differences 
in standard deviations, with an average difference of .250 .   The Compartmental Model 
technique was second with .359, the Maximum Entropy technique had .432, while the 
HMM technique had .452. 

Average Behavior 

To develop additional insight into model behavior we can compare graphs of aggregated 
state values. In Figures 14-17 below we present illustrations of average model behavior 
versus average simulation behavior over time for one baseline scenario of the simulation. 
The figures display averages of model/simulation outputs over all time periods, therefore 
they dampen variability. Nor are they based on cross validation. However, they provide 
a quick, visual means of assessing relative algorithm performance. Keep in mind that the 
figures show typical behavior. Behaviors vary slightly with different random number 
seeds 

The baseline scenario for the Mission Simulation is where: 

• mission damage probability = .10 
• 2 FAC's, FAC time ~N(10,2), arrivals every 5 minutes 

Fuel States = 4, Queue States = 3 • 

Figure 14 shows that the Canonical State Space technique is clearly not appropriate for 
the Mission Simulation. It performed very poorly in this scenario (and in many others - 
although sometimes better than shown in the figure). In Figures 15 and 16 we see that 
both the Compartmental Model and HMM techniques seemed to do a fair job of state 
matching this scenario of the Mission Simulation.   In Figure 17 we can see that the 
Maximum Entropy technique appears to have performed very well on this scenario of the 
Mission Simulation. 
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Figure 14. Canonical State Space- Baseline Scenario 
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Figure 15. Compartmental Model - Baseline Scenario 
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Figure 16. Maximum Entropy - Baseline Scenario 
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Figure 17. HMM - Baseline Scenario 
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Model Based Decisions 

We next examine the ability of the identified models to provide key decision making 
outputs similar to those produced by the underlying simulations. For the Mission 
Simulation, the outputs of concern are the number of missions completed and the number 
of aircraft damaged/destroyed. For this test, we look at the proportional differences in the 
values reported, and average these across all scenarios. Dividing the average absolute 
difference in values by the mean simulation values creates the proportion. The results are 
shown in Figures 18 and 19 below. We see that the Maximum Entropy technique is best 
at predicting the number of missions completed. Its estimates were off the true value by 
an average of 9.1%. In individual scenarios (not shown), the difference was almost 
always about 9% and the model always under-predicts the average simulation value. The 
Maximum Entropy technique provided the best predictor in each and every scenario. 
Returning to Figure 18, we see that the Compartmental Model and especially the HMM 
techniques were significantly worse. The Canonical State Space technique was 100% off, 
the reason being that the model has no way of predicting missions completed. The 
number of missions completed is a count of the aircraft transitions out of the "Combat" 
states, but the Canonical State Space technique can not track discrete movements between 
states, it is only capable of predicting total state values. Interestingly, the Maximum 
Entropy and Compartmental Model techniques tended to underestimate the number of 
missions completed, while the HMM technique tended to overestimate the number of 
missions completed. 
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Figure 18. Average Proportional Differences in Missions Completed - Mission 
Simulation 

In Figure 19 we see that the Maximum Entropy technique was also best in predicting the 
number of aircraft damaged/destroyed. It was off in its predictions by an average of 
18.6%. It was the best predictor in each and every scenario. Again, the Compartmental 
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Model and HMM techniques were significantly worse, while the Canonical State Space 
technique is "off the charts". The Maximum Entropy technique provided the best 
predictor in each and every scenario. The Maximum Entropy and Compartmental Model 
techniques had no clear pattern of under or over estimation of this value, while the HMM 
technique tended to overestimate. 

Figure 19. Average Proportional Differences in Aircraft Damaged/Destroyed 
Mission Simulation 
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Attrition Simulation 

For the HMM algorithm, the behavior of the models is determined by averaging across 
100 stochastic runs. All other algorithms produce a single deterministic model. 

State Matching 

The first test reports the average absolute difference between model and simulation state 
values over all time periods of the simulation.   Recall that in the Attrition Simulation the 
state values represent the Red/Blue force strengths. The values displayed in Figure 20 
below are averages over all time periods of all eight scenarios. We see that the 
Compartmental Model and HMM techniques approximately tie for first place, while the 
Canonical State Space and Maximum Entropy techniques are "off the charts". However, 
for the latter two techniques it should be noted that the majority of the contribution to the 
average was from two or three scenarios, other scenarios had average values much closer 
to the former two techniques. Additional explanation is provided in the next section. 

w 
0) 
3 
(0 
> 
3 
$ 
V) 
c 
0) u 
c 
£ 

Attrition Simulation Cross Validation 1 

518.506 4.837 /\ 
1755.3 

A   ATC 

/ \ / ,  \ 

; 

| 

i 

Canonical        Compartmental Entropy HMM 

Figure 20. Average Absolute Differences in State Values - Attrition Simulation 

In individual scenarios (not shown), the Compartmental Model technique was best 8 out 
of 24 times, the Canonical State Space technique was best 2 times, and the HMM 
technique was best 14 times. 

The differences in the standard deviation of state values was smallest for the HMM 
technique in every scenario. Overall, the average value of the difference in standard 
deviation of differences was 2.202 for the HMM technique, and 3.868 for all other 
techniques (being deterministic, they each had standard deviations of 0 within a given 
model). 
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Average Behavior 

As was the case with the Mission Simulation, we can develop additional insight into 
model behavior by comparing graphs of aggregated state values, shown in Figures 21-24 
below. 

The baseline scenario for the Attrition Simulation is the situation where: 

• kill probabilities are uniformly distributed between .01 and . 10 
• inter-firing time distributions are LogNormal 
• starting force strengths are "Low" 
• Combat termination occurs when the force strength (of either side) reaches a given 

threshold value (1/2 of the starting strength). 

In Figure 21 below, we see that the Canonical State Space technique appears to have 
done a fair j ob of state matching this scenario of the Attrition Simulation.  Note that 
there is no graph of standard deviations for the Red and Blue models. The standard 
deviations of these are actually zero, the reason being that the identified model is 
deterministic. 

In Figure 22, we see that the Compartmental Model technique appears to have some 
predictive value for the Attrition Simulation, while Figure 23 shows that the Maximum 
Entropy technique performed poor to fair overall. The main problem with the Maximum 
Entropy technique was its tendency to diverge over time from the average simulation 
behavior. In some cases the divergence was much more pronounced than shown below. 
This is the reason for the "off the charts" difference in state values in Figure 20. A 
similar phenomenon would sometimes occur with the Canonical State Space technique. 
In Figure 24 we see that the HMM technique appears to have performed very well on this 
scenario of the Attrition Simulation. 
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Model Based Decisions 

In these tests we compare the models in their ability to predict two key output values, the 
average time to termination (battle end time), and the fraction of times that "Blue" wins 
the battle. In this test, we convert the absolute difference in termination times to a 
proportion of the average simulation values. For this output, we see in Figure 25 below 
that the Maximum Entropy and HMM techniques are approximately tied for first place, 
while the Canonical State Space and Compartmental Model techniques are significantly 
worse. The Maximum Entropy technique is off by an average of 22.9%. In individual 
scenarios (not shown), the Maximum Entropy technique was best 14 out of 24 times, and 
the HMM technique was best the other 10. Interestingly, the HMM technique tended to 
overestimate the termination time, while the Maximum Entropy technique tended to 
underestimate the termination time. 

o> 

Si 
£ c 
5 .2 
« 5 
c .E 
o  g 
r 
o 
Q. 
O 

a> 

Attrition Simulation Cross Validation 2 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

Series2 

Canonical    \ Compartmental      Entropy HMM 

0.474 0.568 0.229 0.251 
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The final test examines how well the models perform in matching the simulations in 
terms of the fraction of wins by "Blue". In Figure 26 below we again see the HMM 
technique doing well, the Maximum Entropy and Compartmental Models techniques 
doing significantly worse, and the Canonical State Space technique doing quite poorly (it 
is almost a counter-predictor!). In individual scenarios (not shown), the Maximum 
Entropy technique was best 6 out of 24 times, and the HMM technique was best the other 
18. Here, there was no clear pattern of over or under estimation. 
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Effectiveness of the Best Techniques 

The preceding discussion described the results of a battery of cross-validation tests that 
focused on determining the best system identification technique for each simulation 
model.   In this section, we use a method for determining the absolute, rather than 
relative, effectiveness of these best techniques. A key factor in this analysis is the 
measurement of random variations in the output of the simulation models.   Because of 
this variability, no technique can predict the precise simulation outputs, however, any 
forecasts should fall within a range determined by the mean output value(s), the expected 
variation about this mean, and a given level of statistical confidence.   We will present the 
results of this analysis on our "best" techniques. 

Method 

The method is based on statistical sampling as commonly applied to process control (see, 
for example, Chase and Aquilano, 1995). A simulation scenario provides the "process", 
and batches of simulation runs provide a set of samples for determining our limits of 
variation ("control limits"). We then extract "samples" from the output of our identified 
models and compare them to the control limits derived from the simulation data. Sample 
model data falling outside the control limits provides evidence that the simulations were 
not correctly identified. The tests will be applied to our "decision-making outputs". For 
the Attrition Simulation these are the completion/termination time and the "Blue" win 
fraction. For the Mission Simulation these are the number of missions completed and the 
number of aircraft destroyed. 
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For all but the Blue win fraction we proceed as follows. Let: 

n = sample size (number of simulation runs in a sample) 
Xi= output value from simulation run / 
m = total number of samples 
Rj = range of output values in sampley 

For each sample, the mean value is given by: 

The average of the mean of samples is: 

The average range of the samples is: 

We can then compute upper and lower control limits on both X and R as: 

UCLx=X + A2R 

LCLx = X-A2R 

UCLR = D4R 

LCLR = D3R 

where A2, D3, and D4 can be found in statistical tables as a function of confidence level 
and sample size. 

Once these control limits have been calculated, we can compare the X and R sample 
values (model outputs) to them to determine model effectiveness. Values falling outside 
of the limits suggest that the model has not correctly identified the underlying simulation. 
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To calculate control limits for the Blue win fraction let: 

p = the overall blue win fraction from all runs in all samples 

s   - l——— = standard deviation of the fraction 

Then: 

UCLp=p + =sp 

LCLp =p-=sp 

where z is the number of standard deviations for a specific confidence, typically; 

Effectiveness Results 

The effectiveness analysis was applied to the three baseline scenarios (1 for each of three 
seeds) of each simulation. Based on fairly obvious results from the previous section, the 
HMM technique was tested against the Attrition Simulation, while the Maximum 
Entropy technique was tested against the Mission Simulation. To establish control limits, 
the simulations were first run in 25 batches with a sample size of 10 runs per batch.   We 
used "3 sigma" control limits, which is equivalent to saying that the process should 
provide values within these limits 99.7% of the time. 

Two system identification types were performed using the three baseline simulation 
scenarios, one used 10 simulation runs, while a second used 20 simulation runs. As with 
the cross validation, 11 separate identifications were performed (for each type). Once the 
models were identified, a sample batch of 10 runs was produced by each of the 11 
identified models. The averages and ranges from these sample batches were compared to 
the control limits. Values outside of the control limits provide evidence that the 
underlying process has not been correctly identified. 
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Attrition Simulation 

We first examine the completion (termination) times of the Attrition Simulation. Figure 
27 below shows the batch averages versus control limits for the model effectiveness test 
runs. Some values fall outside of the control limits, less in the 20-run identification than 
in the 10-run identification.   The former has 4 out of 33 values outside of the limits 
while the latter has 10 of 33 values outside of the limits. The simulation average values 
for the 3 seeds were (88.3,119.6,103.9) while the corresponding model averages were 
(97.9,140.2, 136.7) for the 10-run identifications, and (97.4, 128.7,127.7) for the 20-run 
identifications. 
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We also examine control charts for the range of completion times within a sample. 
These are illustrated in Figure 28 below. These control charts measure the variability of 
the process. We see that the 20-run identification had no values outside of the control 
limits, while the 10-run identification had 4 of 33 values outside of the control limits. 
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Figure 29 below presents control charts for the fraction of times that "Blue" wins in a 
given sample. The 10-run identifications produced 2 values outside of the control limits, 
while the 20-run identification produced 1. The simulation average values for the 3 
seeds were (.68, .5520, .776) while the corresponding model averages were (.672, .409, 
.70) for the 10-run identifications, and (.609, .473, .618) for the 20-run identifications. 
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Mission Simulation 

We next examine the number of missions completed in the Mission Simulation. Figure 
30 below shows the batch averages versus control limits for the model effectiveness test 
runs. In this case, more values fall outside (below) the control limits than inside, in both 
the 20-run identifications and 10-run identifications. The simulation average values for 
the 3 seeds were (20.8,20.9,20.6) while the corresponding model averages were (18.2, 
18.8,18.4) for the 10-run identifications, and (18.2,18.6,18.5) for the 20-run 
identifications. 
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We also examine control charts for the range of missions complete within a sample. 
These are illustrated in Figure 31 below. These control charts measure the variability of 
the process. We see that both the 20-run identification and the 10-run identifications had 
most values outside (above) the control limits. In fact, the 20-run identification had more 
values outside than the 10-run identification. 
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We next examine the number of aircraft destroyed in the Mission Simulation. Figure 32 
below shows the batch averages versus control limits for the model effectiveness test 
runs. In this case, all values but 2 fall inside of the control limits, both of these in 10-run 
identifications. The simulation average values for the 3 seeds were (2.4,2.4,2.4) while 
the corresponding model averages were (2.2,1.9,2.4) for the 10-run identifications, and 
(2.2,2.1,2.3) for the 20-run identifications. 
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Last, we examine control charts for the range of aircraft destroyed within a sample. 
These are illustrated in Figure 33 below. We see that both the 20-run identification and 
the 10-run identifications had all values inside the control limits. 
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Algorithm Performance Considerations 

This section compares the algorithms in terms of speed, memory usage, and robustness. 
The implementation platform was a Windows NT Workstation with a 433 MHz 
processor and 256 MB of RAM. The algorithms were implemented in MATLAB, 
Version 5.3, with the exception of two key subroutines (described below), that were 
implemented as C dynamic link libraries.   The Maximum Entropy algorithm requires an 
add-in package to MATLAB, known as the Optimization Toolbox (Coleman, et. al; 
1999).   Note that MATLAB is an interpreted language and was used in that mode during 
this research. MATLAB software can also be compiled into C and C++ code via 
MATLAB compiler software and libraries, resulting in programs that run much faster 
than the original MATLAB code. Run times provided below result from a single 
identification, whereas each cross-validation test run required 110 identifications (there 
were 204 test runs - one for each scenario/seed combination). The RAM requirements 
discussed below are in terms of what is needed in addition to the RAM taken up by the 
operating system and MATLAB software (about 60 MB). 

Canonical State Space 

This algorithm operates relatively fast (less than a second), and does not require a lot of 
memory (perhaps 1-3 MB depending on the simulation and the scenario). Its operation 
was simplified by the fact that the states we attempt to identify are fully observable, thus 
the structural indices need not be calculated. An occasional numerical problem occurs 
where the estimation matrix, "S", is singular. As a practical work-around, the matrix was 
perturbed to non-singular form without significant degradation of results. 

Compartmental 

This algorithm also operates relatively fast (less than a second), and does not require a lot 
of memory (perhaps 1-5 MB depending on the simulation and the scenario). However, a 
robust implementation requires attention to potential numerical difficulties. First, the 
technique involves the computation of terms of the form: eAt, where A is a transition rate 
matrix. These can be computed via eigenvalue decomposition methods, however, the 
potential exists for the decomposition to not exist or to involve complex numbers (we 
experienced both of these situations in early trials). The built in MATLAB function for 
this type of exponential calculation handles these situations automatically. Similarly, the 
MATLAB matrix convolution function performs calculations needed to find derivatives, 
thus sidestepping the need to deal with potentially singular decomposition matrices. 
These MATLAB functions were substituted for our earlier, more fundamental code. A 
final difficulty can result when the variance-covariance matrix, "V", is singular. As a 
practical work-around, the matrix was perturbed to non-singular form without significant 
degradation of results.   Coding the variance-covariance matrix building subroutine in C 
averted a computational bottleneck. 
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Maximum Entropy 

This algorithm operates relatively slow, and sometimes requires large amounts of 
memory; even with "sparse" versions of the constraint matrices and the "large-scale" 
mode of the optimization function.   In the Attrition Simulation, about 40 MB of 
additional RAM was needed and the time required for a single identification ranged from 
about 10 seconds to about 3 minutes. In the Mission Simulation, up to 200 MB of 
additional RAM was needed and the identification time ranged from about 30 seconds to 
about 8 minutes. This slowness results partly from the relatively large constraint matrix 
needed to find the parameter values. In the baseline scenario of the Attrition Simulation, 
the matrices typically had around 600 rows (constraints) and 1300 columns (variables). 
In the Mission Simulation we could typically have about 1800 rows and 5500 columns 
for the baseline scenario. Another reason for slow speed was that in both simulations, 
the nonlinear programming subroutine would sometimes converge very slowly. As a 
practical work-around, an iteration limit of 100 was employed without significant 
degradation of results.   In the case of the Attrition Simulation, the algorithm would also 
sometimes "lock up" while performing the linear programming subroutine that calculates 
prior estimates. In these instances, what normally required a few seconds might take up 
to 30 minutes, and produce an infeasible solution (these were eliminated from the 
parameter averages).   This problem has been isolated to scenarios where a few 
simulations were significantly longer than the average within an identification group, 
leading to an unusually large constraint matrix (e.g. 3000 x 3000). The behavior of this 
algorithm is strongly influenced by the choice of optimization software. Particularly with 
nonlinear programming, there can be large differences in efficiency and solution quality 
between packages. In this study, we used MATLAB's Optimization Toolbox add-on 
package. A compiled version would likely run much faster. Systems View has also had 
some previous experience with a C-based mathematical programming package known as 
LOQO (Vanderbei, 1999), which seems to converge very quickly on these sorts of 
problems. However, for this high-level comparison, the acquisition and integration costs 
of this package were not warranted, but might be for a more in depth study that focused 
on the Maximum Entropy technique. 

HMM 

The worst-case performance of this algorithm increases with N3T and memory 
requirements increase with N3, where N is the number of states, and T is the number of 
time periods.   We developed an optimized C code version of the HMM computational 
subroutine that exploits the sparsity (zero elements) typically found in the state transition 
matrix. This allows us to handle state transition matrices of up to 400 x 400 elements 
(N=400) and a T of about 50, without major difficulty. The Mission Simulation had no 
more than 26 states, so HMM was very fast (milliseconds) and required negligible 
memory. In the Attrition Simulation we set N=256, representing 16 subdivisions of Red 
and Blue output values, and T ranged from about 50 to 150, depending upon the scenario. 
The algorithm operated on the order of 10 to 90 seconds per identification. Memory 
requirements were small, a marginal increase of 6 MB or so for the HMM subroutine. 
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Results Summary and Conclusions 

Identification Techniques 

The results clearly demonstrated that the Hidden Markov Model (HMM) technique was 
superior at identifying the Attrition Simulation (See Table 2 below). It was slightly 
better than the next best technique (Compartmental Models) at matching states, second 
best at predicting completion/termination times (Maximum Entropy was best), and 
superior in predicting the Blue win fraction. This conclusion is strengthened by the fact 
that the Compartmental Models technique was worst at predicting completion time and 
second worst in predicting the Blue win fraction. Similarly, the Maximum Entropy 
technique was worst in matching states (it was "off the charts"). Only HMM excelled in 
all tests. 

Technique State Comp. Time 
(proportion) 

Blue Win 
Fraction 

Canonical State 
Space 

518.506 .474 .51 

Compartmental 
Model 

4.837 .568 .333 

Maximum Entropy 1755.3 .229 .29 

Hidden Markov 
Model (HMM)* 

4.476 .251 .164 

Table 2. Attrition Simulation - Average Errors 

It is equally clear that the Maximum Entropy technique was superior at identifying the 
Mission Simulation (See Table 3 below). It was slightly better than the next best 
technique (HMM) at matching states, superior in predicting the number of missions 
completed, and slightly better than the next best technique (Compartmental Models) in 
predicting the number of aircraft destroyed. While the HMM technique did very well in 
the Attrition Simulation, it was very poor at predicting missions completed and aircraft 
destroyed in the Mission Simulation. 

Technique State Missions 
Completed 

(proportion) 

Aircraft 
Destroyed 

(proportion) 
Canonical State 
Space 

2.04 1 8.630 

Compartmental 
Model 

.8127 .303 .255 

Maximum Entropy* .604 091 .186 
Hidden Markov 
Model (HMM) 

.763 .632 .635 

Table 3. Mission Simulation - Average Errors 
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It was initially surprising that, while the HMM technique did very well with the Attrition 
Simulation, it did poorly on the Mission Simulation. The same is true in reverse for the 
Maximum Entropy technique. After all, both produce a stochastic identified model. We 
believe there are two main reasons for this. 

The first is that the Mission Simulation had inputs (aircraft), while the Attrition 
Simulation did not.'l  The only way that the HMM technique can incorporate entities 
entering different states of the model is through the prior distribution of the state, q0. The 
prior distribution is a model input that we calculated off-line via historical frequencies, 
conditioned on the number of aircraft already in the model. The Maximum Entropy 
technique handles inputs directly, via the input transition matrix, B. Calculation of the 
input transition matrix is performed simultaneously with the calculation of the state 
transition matrix, allowing for joint optimization.   This leads us to a conclusion that 
simulations with inputs are best identified by techniques that include the input transitions 
in the identification process. 

The second reason is that in the Attrition Simulation, the HMM technique operated upon 
aggregated force strengths while the Maximum Entropy technique operated upon force 
strength by weapon system type. The force strengths of individual weapon system types 
had a lot of variability. In addition, they could start out large, and then go to zero, 
remaining that way for extended periods until termination conditions were reached. This 
creates the potential for scaling problems, a frequent difficulty with mathematical 
programming algorithms. This leads us to a conclusion that the Maximum Entropy 
technique is not suitable for models where state values have extreme amounts of 
variability and/or scale differences. 

Overall Effectiveness 

The effectiveness testing on these two best techniques provided mostly positive results. 
In the case of the HMM/Attrition algorithm, we saw that both completion times and the 
winning side were predicted fairly well. Specifically, in the more refined models (20-run 
identifications) only 4 of 33 average completion time values fell outside the control 
limits, while none of the sample ranges fell outside of the control limits. Only 1 of 33 
values fell outside of the control limits for the blue win fraction. 

In the case of the Entropy/Mission algorithm the results were promising, but not as good 
as with the HMM/Attrition algorithm. The main problem was that in predicting the 
number of missions completed, the model consistently underestimated the simulations by 
about 10%. This result was true in both the 10-run and 20-run identifications. In 
addition, the ranges of values within a sample were consistently too high. On the other 
hand, the Entropy/Mission algorithm did a good job in predicting the number of aircraft 

11 Except of course when required for the Canonical State Space technique. 
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destroyed. In the 20-run identifications, no values were outside of the control limits for 
either the average value or the range of values within a sample. 

Performance 

The HMM algorithm, as implemented in this research, is relatively fast and space 
efficient. One caveat is that the run-time performance could degrade in situations where 
there are more than about 400 states (with current hardware) and/or the state transition 
matrix is dense. 

The Maximum Entropy algorithm, as implemented in this research, is relatively slow and 
requires relatively large amounts of memory. However, the key driver is the 
mathematical programming subroutines. Obviously, efficient, compiled C code 
implementations would be much faster than our MATLAB version. It is not clear how 
much more space efficient other implementations might be. 
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Discussion 

This research has demonstrated the viability of abstracting stochastic simulation models 
via state-based system identification techniques. It was significant that system 
identification techniques resulting in stochastic models were best at identifying stochastic 
simulations. The results did vary by simulation model, scenario, and identification 
technique in that no one technique is universally superior for all simulations. Even the 
"worst" methods would sometimes provide the best estimate in a given scenario. 
However, the Hidden Markov Model (HMM) technique and Maximum Entropy 
technique showed the most promise.   The results suggest that a hybrid method that 
combines the results of several identification techniques would likely provide improved 
estimates. The statistical technique of classification trees is one approach for combining 
the results of identified models. 

Choice of an appropriate state-space analogue to the underlying simulation is important. 
The number of possible states or observations can not be too large, both for 
computational performance, and for numerical tractability. The state space must be kept 
reasonably small since the run time of most identification techniques increases in a 
polynomial fashion with the number of states. State abstraction/aggregation prior to 
identification may be critical for success. For example, in the Attrition Simulation we 
performed two levels of abstraction. First, we converted weapon system counts, lethality, 
and vulnerability to force strengths. Second, (in the HMM identification) we aggregated 
the force strengths by weapon system type to a single value per side.   In the Mission 
Simulation, we needed a state space that would capture the different activities of the 
individual aircraft (targeting, combat, damaged/destroyed, and returning), their current 
fuel level, as well as the queuing effect at the forward air controller. We used an 
approach of discretizing the fuel levels (a continuous to discrete abstraction) and 
aggregating the possible queue sizes. Without these abstractions the number of possible 
states in either simulation would have been astronomical. 

The modeled states must also be chosen so that counts of either state populations or state 
transitions suffice to provide outputs analogous to those of the underlying simulation. 
For example, in the stochastic identifications of the Mission Simulation, the number of 
missions completed was determined by observing the number of entity transitions 
between "combat" states and states other than "destroyed". The number of aircraft 
destroyed was a simple count of a state population. In the HMM identifications of the 
Attrition Simulation, each state corresponded to a pair of Red/Blue force strengths. We 
could determine termination time by capturing the time period that the identified model 
entered one of a set of designated terminal states, while the winner was found by 
comparing the Red/Blue force strength pair at termination to see which was greater.   All 
of this points to the fact that the purpose of the model must drive its structure, scope, and 
resolution. 
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Appendix A - Attrition Simulation: Methods for Calculating Force 
Strengths, Initial Force Levels, and Fire Allocation 

Force Strength Calculation 

A force strength, S, measures the relative strength of a collection of weapon systems. It 
can be computed as follows: 

Ns = the number of different weapon types on side s; s e {R, B} 
VjS = the weapon score for weapon system i on side s; i = 1,2,3,.. N5, s e {R, B) 
W,s = the number of weapons of type i on side s; i = 1,2,3,.. N5, s e {R, B} 

Then:  Ss = 
N' 

i 
1=1 

v?w? se {R,B} [A.1] 

where p may vary according to the force scoring assumptions. Typical values are 1 or Vz. 
The force ratios are then determined by: 

r -SV 
zw 
;=i 

ZW 
i=i 

[A.2] 

The terms, V;s, are functions of the known kill probabilities, inter-firing times, and the 
fire allocation assumptions.   To calculate, let: 

E;s = the average number of engagements per time period made by a weapon of type /' on 
side s (against all enemy weapons). Note that E^ is the inverse of the mean of the 
interfiling time distribution for weapon system /; i = 1,2,3,.. N5, s e {R, B}. 

PijS = the probability of kill per engagement by a weapon of type / on side s when that 
weapon is engaging an enemy of typey; i = 1,2,3,.. Ns ,j = 1,2,3,.. Ns ,s e {R, B}. 

AyS = the allocation of fire from a weapon of type / on side s when that weapon is 
engaging an enemy of typey; i = 1,2,3,.. Ns , j = 1,2,3,.. Ns, s € {R, B}. Note that 

;=A=1- 
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Kijs = the expected rate at which weapon systems of type / on side s kill weapon systems 
of enemy type/, i = 1,2,3,.. Ns , j = 1,2,3,.. F.se {R, B} This is equivalent to 

Sp s 
lj rl] ■ Ei'Aij'Pi 

A variety of scoring equations based on these quantities has been proposed.   The best for 
our purposes appears to be the DYNPOT (dynamic potential) method, which considers 
both lethality and vulnerability in both the short and long run time frames. An earlier and 
more well known method, Anti-Potential Potential (APP), has been used in various ways 
in a number of military simulations such as EDAGAM, INBATIM, JCS FPM, and 
EDAPLAN, which are all dynamic theatre-level models of ground and air combat. 
However, APP has the flaws that 1) it addresses lethality but ignores the relative 
vulnerability of weapon systems, and 2) it computes an instantaneous score for a weapon, 
but not a long run score. The DYNPOT technique addresses these shortfalls, resulting in 
a set of equations for the weapon scores (ViS 's) as follows: 

h" 

ßV,s =    i=L ;    i = 1,2,3, ..r,se{R,B} [A3] 
A" 

J=I 

where ß is a coefficient that is constant across all weapon systems and is calculated along 
with the ViS 's. The denominator terms, K, are defined by: 

*; = 

W?Ki 
V;,   WJ > 0    ; i = 1,2,3,.. N> , j = 1,2,3,.. Ns, s e {R, B} [A4] 

otherwise 

which can be interpreted as the rate at which weapon systems of type/ on side s' is being 
killed by all weapons of type / on side s. 

To solve for the V/ values, we set one of them to 1.0, and assuming that we know the 
Kys, we can solve a set of equations12 for ß and the remaining Vj5. 

When initializing our attrition simulation model we will have a known desired force 
strength ratio, but will not know the W*s that along with the KjjS's will achieve that ratio. 
These can be determined via an iterative algorithm as shown below. 

12 Following the guidance of Anderson and Miercort (1995) we set ß to 1.0 and solve the 
NR + NB linear equations for NR + NB-1 unknowns. 
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Algorithm for Calculating Initial W* 

0. Select initial values for Wjs>0, i = 1,2,3,.. N° ,s e {R, B); set V,s= 1; select p, and 
the desired force strength ratio rp°; select s > 0 = the maximum deviation from rp°. 

1. Solve equations [A.4] and then [A.3] for the Vf's and ß. 
2. Solve equation [A.2] for the force strength ratio, rp. 
3. If |rp° - rp| < 8 then STOP, otherwise go to step 4. 
4. If (rp° - rp) < 0 (force strength ratio is too high) set s = R; otherwise (force strength 

ratio is too low) set s = B and find: 

WJs) = —*-;i=l£3,.. Ns 
p        dWs 

i': V/-; (.<?) < Vr'p(s) i,i' = 1,2,3,...Ns     (see note) 

5. Set W- = Wf +1 and GO TO Step 1. 

Note: The inequality, <, is used to distribute the increases among the various weapon 
system types. The inequality, >, would be faster, but would cause all the increases to 
occur in a single weapon system type. 

Note that, at each iteration, the side that is "too weak" with respect to the desired force 
strength ratio has the population of one weapon system type increased by 1. We do this, 
rather than decrease weapons on the "too strong" side, to ensure convergence and to 
avoid numerical problems resulting from weapon system populations possibly going to 
zero. 

Fire Allocation Methodology 

In general, fire allocation is a function of the current force levels, the average rates of 
fire, the kill probabilities, and any additional externally provided allocation parameters, 
A (Anderson and Miercort, 1989). That is: 

AZ    rsmTrn~A.   .       ^ AS    f0 if weapon type i engages no targets 
4 = F,(FP.*.J>M)"tae I,,^ otherwlse 

There are two major types of fire allocation rules within this framework - strict priorities, 
and fractional allocations. Strict priority methods select a single target weapon system at 
each firing event, while fractional allocation methods distribute the fire proportionally 
{probabilistically, in our stochastic model) among targets at each firing event. The 
simplest fractional allocation method is one in which the fractions are fixed throughout 
the course of the model (except when the quantity of an opposing weapon system type 
becomes 0, in which case a valid «allocation is performed). The problem with this 
technique is that the target choice is then independent of the number of targets of each 
type present, which is clearly unrealistic. Strict priority rules also have problems related 
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to their inability to incorporate the random effects of unmodeled variables such as enemy 
detection, local terrain features, or proximity. We use a fractional allocation method that 
is dependent on current model conditions. The method provides values proportional to 
the number of enemy weapons: 

cwf 
4 = 

Y ,qws. 

The QjS terms can be provided externally13 or calculated from other model parameters. 
We use a form of the latter strategy that exploits our knowledge of E and P. Namely: 

q = E;P;E*P; 

which tends to focus fire on targets that are most effective by weapons which are the 
most effective against them. 

?U.S. GOVERNMENT PRINTING OFFICE:      2000-510-079-81242 

13 This general approach is used in combat simulations such as IDAGAM, INBATIM, 
TACWAR, JCS FPM, and IDAPLAN. 
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